Skip to main content

Verifiable Ensembles of Low-Dimensional Submodels for Multi-class Problems with Imbalanced Misclassification Costs

  • Chapter
  • 886 Accesses

Part of the book series: Studies in Computational Intelligence ((SCI,volume 245))

Abstract

In this chapter, we discuss different strategies of extending an ensemble approach based on local binary classifiers to solve multi-class problems. The ensembles of binary classifiers were developed with the objective of providing interpretable submodels s for use in safety-related application domains. The ensembles assume highly imbalanced misclassification costs between the two classes. The extension to multi-class problems is not straightforward because common multi-class extensions might induce inconsistent decisions. We propose a solution of this problem that avoids such inconsistencies by introducing a hierarchy of misclassification costs. We show that by following such a hierarchy it becomes feasible to extend the binary ensemble, to maintain the desirable properties (that is, the good interpretability) of the binary ensemble, and to achieve a good predictive performance.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Asuncion, A., Newman, D.J.: UCI Machine Learning Repository. University of California, Irvine, School of Information and Computer Sciences, http://www.ics.uci.edu/~mlearn/MLRepository.html

  2. Breiman, L., Friedman, J.H., Stone, C.J., Olshen, R.A.: Classification and Regression Trees. CRC Press, Boca Raton (1984)

    MATH  Google Scholar 

  3. Cardoso, J.S., da Costa, P.J.F., Cardoso, M.J.: Modelling ordinal relations with SVMs: an application to objective aesthetic evaluation of breast cancer conservative treatment. Neural Networks 18(5–6), 808–817 (2005)

    Article  Google Scholar 

  4. Chang, C.-C., Lin, C.-J.: LIBSVM: a library for support vector machines, http://www.csie.ntu.edu.tw/~cjlin/libsvm

  5. Ferri, C., Hernández-Orallo, J., Salido, M.A.: Volume under the ROC surface for multi-class problems. In: Lavrač, N., Gamberger, D., Todorovski, L., Blockeel, H. (eds.) ECML 2003. LNCS (LNAI), vol. 2837, pp. 108–120. Springer, Heidelberg (2003)

    Google Scholar 

  6. Friedman, J.H.: Another approach to polychotomous classification. Department of Statistics, Stanford University (1996)

    Google Scholar 

  7. Friedman, J.H., Tukey, J.W.: A projection pursuit algorithm for exploratory data analysis. IEEE Trans. Comp. 23(9), 881–890 (1974)

    Article  MATH  Google Scholar 

  8. Fürnkranz, J.: Separate-and-conquer rule learning. Artif. Intell. Review 13(1), 3–54 (1999)

    Article  MATH  Google Scholar 

  9. Guyon, I., Elisseeff, A.: An introduction to feature extraction. In: Guyon, I., Gunn, S., Nikravesh, M., Zadeh, L. (eds.) Feature Extraction: Foundations and Applications, pp. 1–25. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  10. Güvenir, H.A., Demiröz, G., Ilter, N.: Learning differential diagnosis of erythemato-squamous diseases using voting feature intervals. Artif. Intell. in Medicine 13(3), 147–165 (1998)

    Article  Google Scholar 

  11. Hastie, T., Tibshirani, R.: Generalized Additive Models. Chapman & Hall, Boca Raton (1990)

    MATH  Google Scholar 

  12. Hsu, C.-W., Lin, C.-J.: A comparison of methods for multiclass support vector machines. IEEE Trans. Neural Networks 13(2), 415–425 (2002)

    Article  Google Scholar 

  13. Huber, P.J.: Projection pursuit. The Annals of Statistics 13(2), 435–475 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  14. Kohavi, R.: A Study of cross-validation and bootstrap for accuracy estimation and model selection. In: Proc. 14th Int. Joint Conf. Artif. Intell., Montréal, QB, pp. 1137–1143. Morgan Kaufmann, San Francisco (1995)

    Google Scholar 

  15. Kohavi, R., John, G.H.: Wrappers for feature subset selection. Artif. Intell. 97(1–2), 273–324 (1997)

    Article  MATH  Google Scholar 

  16. Nusser, S., Otte, C., Hauptmann, W.: Learning binary classifiers for applications in safety-related domains. In: Mikut, R., Reischl, M. (eds.) Proc. 17th Workshop Computational Intell., Dortmund, Germany, pp. 139–151. Universitätsverlag Karlsruhe (2007)

    Google Scholar 

  17. Stone, C.J.: Additive regression and other nonparametric models. The Annals of Statistics 13(2), 689–705 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  18. Szepannek, G., Weihs, C.: Local modelling in classification on different feature subspaces. In: Perner, P. (ed.) ICDM 2006. LNCS (LNAI), vol. 4065, pp. 226–238. Springer, Heidelberg (2006)

    Google Scholar 

  19. Tax, D.M.J., Duin, R.P.W.: Using two-class classifiers for multiclass classification. In: Proc. 16th Int. Conf. Patt. Recogn., Québec, QB, pp. 124–127 (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Nusser, S., Otte, C., Hauptmann, W. (2009). Verifiable Ensembles of Low-Dimensional Submodels for Multi-class Problems with Imbalanced Misclassification Costs. In: Okun, O., Valentini, G. (eds) Applications of Supervised and Unsupervised Ensemble Methods. Studies in Computational Intelligence, vol 245. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-03999-7_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-03999-7_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-03998-0

  • Online ISBN: 978-3-642-03999-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics