Skip to main content

BEC–BCS Crossover in Strongly Interacting Matter

  • Chapter
  • First Online:
Metal-to-Nonmetal Transitions

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 132))

Abstract

A quantum field theoretical approach to the thermodynamics of dense Fermi systems is developed for the description of the formation and the dissolution of quantum condensates and bound states in dependence of temperature and density. As a model system, we study the chiral and superconducting phase transitions in two-flavor quark matter within the NJL model and their interrelation with the formation of quark–antiquark and diquark bound states. The phase diagram of quark matter is evaluated as a function of the diquark coupling strength, and a coexistence region of chiral symmetry breaking and color superconductivity is obtained at very strong coupling. The crossover between Bose–Einstein condensation of diquark bound states and condensation of diquark resonances (Cooper pairs) in the continuum is discussed as a Mott effect. This effect consists in the transition of bound states into the continuum of scattering states under the influence of compression and heating. We explain the physics of the Mott transition, with special emphasis on the role of the Pauli principle for the case of the pion in quark matter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Q. Chen, J. Stajic, K. Levin, Low Temp. Phys. 32, 406 (2006)

    Article  ADS  Google Scholar 

  2. M. Greiner, C.A. Regal, D.S. Jin Nature 426, 537 (2003)

    Article  ADS  Google Scholar 

  3. M.W. Zwierlein, C.A. Stan, C.H. Schunck, S.M. Raupach, S. Gupta, Z. Hadzibabic, W. Ketterle, Phys. Rev. Lett. 91, 250401 (2003)

    Article  ADS  Google Scholar 

  4. M.W. Zwierlein, J.R. Abo-Shaeer, A. Schirotzek, C.H. Schunck, W. Ketterle, Nature 435, 1047 (2003)

    Article  ADS  Google Scholar 

  5. M. Greiner, O. Mandel, T. Rom, A. Altmeyer, A. Widera, T.W. Hänsch I. Bloch, Physica B 329, 11 (2003)

    Article  ADS  Google Scholar 

  6. E. Calzetta, B.L. Hu, A.M. Rey, Phys. Rev. A 73, 023610 (2006)

    Article  ADS  Google Scholar 

  7. N. Mott, Rev. Mod. Phys. 40, 677 (1968)

    Article  ADS  Google Scholar 

  8. A. Sedrakian, J.W. Clark, M. Alford, eds. Pairing in fermionic system, (World Scientific Publications, Singapore, 2006)

    Google Scholar 

  9. F.X. Bronold, H. Fehske, Phys. Rev. B 74, 165107 (2006)

    Article  ADS  Google Scholar 

  10. R. Redmer, B. Holst, H. Juranek, N. Nettelmann, V. Schwarz, J. Phys. A 39, 4479 (2006)

    Article  ADS  Google Scholar 

  11. M. Schmidt, G. Röpke, H. Schulz, Ann. Phys. 202, 57 (1990)

    Article  ADS  Google Scholar 

  12. H. Stein, A. Schnell, T. Alm, G. Röpke, Z. Phys. A 351, 295 (1995)

    Article  ADS  Google Scholar 

  13. A. Schnell, G. Röpke, P. Schuck, Phys. Rev. Lett. 83, 1926 (1999)

    Article  ADS  Google Scholar 

  14. M. Kitazawa, T. Koide, T. Kunihiro, Y. Nemoto, Phys. Rev. D 65, 091504 (2002)

    Article  ADS  Google Scholar 

  15. M. Kitazawa, T. Koide, T. Kunihiro, Y. Nemoto, Phys. Rev. D 70, 056003 (2004)

    Article  ADS  Google Scholar 

  16. D. Blaschke, D. Ebert, K.G. Klimenko, M.K. Volkov, V.L. Yudichev, Phys. Rev. D 70, 014006 (2004)

    Article  ADS  Google Scholar 

  17. D. Blaschke, S. Fredriksson, H. Grigorian, A.M. Öztas, F. Sandin, Phys. Rev. D 72, 065020 (2005)

    Article  ADS  Google Scholar 

  18. H. Abuki, Nucl. Phys. A 791, 117 (2007)

    Article  ADS  Google Scholar 

  19. J. Deng, A. Schmitt, Q. Wang, Phys. Rev. D 76, 034013 (2007)

    Article  ADS  Google Scholar 

  20. G. Sun, L. He, P. Zhuang, Phys. Rev. D 75, 096004 (2007)

    Article  ADS  Google Scholar 

  21. E.V. Shuryak, arXiv:nucl-th/0606046

    Google Scholar 

  22. J. Kapusta ed. Finite-temperature Field Theory, (Cambridge University Press, Cambridge, 1989), p. 26

    MATH  Google Scholar 

  23. M. Buballa, Phys. Rep. 407, 205 (2005)

    Article  ADS  Google Scholar 

  24. H. Grigorian, Phys. Part. Nucl. Lett. 4, 223 (2007)

    Article  Google Scholar 

  25. H. Kleinert, Fortschr. Phys. 26, 565 (1978)

    Article  MathSciNet  Google Scholar 

  26. D. Ebert, K.K. Klimenko, V.L. Yudichev, Phys. Rev. C 72, 015201 (2005)

    Article  ADS  Google Scholar 

  27. D. Zablocki, D. Blaschke, R. Anglani, AIP conf. Proc. 1038, 159 (2008)

    Article  ADS  Google Scholar 

  28. D. Blaschke, D. Zablocki, Phys. Part. Nucl. 39, 1010 (2008)

    Article  Google Scholar 

  29. J. Hüfner, S.P. Klevansky, P. Rehberg, Nucl. Phys. A 606, 260 (1996)

    Article  ADS  Google Scholar 

  30. V. Gurarie, L. Radzihovsky, Ann. Phys. 322, 2 (2007)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  31. E.V. Shuryak, I. Zahed, Phys. Rev. D 70, 054507 (2004)

    Article  ADS  Google Scholar 

  32. Y. Nambu, G. Jona-Lasinio, Phys. Rev. 122, 345 (1961);Phys. Rev. 124, 246 (1961)

    Article  ADS  Google Scholar 

  33. A.N. Ivanov, H. Oberhummer, N.I. Troitskaya, M. Faber, Eur. Phys. J. A 7, 519 (2000)

    Article  ADS  Google Scholar 

  34. M. Buballa, Nucl. Phys. A 611, 393 (1996) [arXiv:nucl-th/9609044]

    Article  ADS  Google Scholar 

  35. H. Reinhardt, H. Schulz, Nucl. Phys. A 432, 630 (1985)

    Article  ADS  Google Scholar 

  36. C.J. Horowitz, E.J. Moniz, J.W. Negele, Phys. Rev. D 31, 1689 (1985)

    Article  ADS  Google Scholar 

  37. G. Röpke, D. Blaschke, H. Schulz, Phys. Rev. D 34, 3499 (1986)

    Article  ADS  Google Scholar 

  38. W. Bentz, A.W. Thomas, Nucl. Phys. A 696, 138 (2001)

    Article  MATH  ADS  Google Scholar 

  39. R. Huguet, J.C. Caillon, J. Labarsouque, Nucl. Phys. A 781, 448 (2007)

    Article  ADS  Google Scholar 

  40. A.H. Rezaeian, H.J. Pirner, Nucl. Phys. A 769, 35 (2006)

    Article  ADS  Google Scholar 

  41. A. Sedrakian, Prog. Part. Nucl. Phys. 58, 168 (2007)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Zablocki .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Zablocki, D., Blaschke, D., Röpke, G. (2010). BEC–BCS Crossover in Strongly Interacting Matter. In: Redmer, R., Hensel, F., Holst, B. (eds) Metal-to-Nonmetal Transitions. Springer Series in Materials Science, vol 132. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-03953-9_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-03953-9_7

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-03952-2

  • Online ISBN: 978-3-642-03953-9

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics