Advertisement

Sphingolipid Signaling in Plants

  • Louise V. MichaelsonEmail author
  • Johnathan A. Napier
Chapter
Part of the Plant Cell Monographs book series (CELLMONO, volume 16)

Abstract

Until relatively recently, plant sphingolipids were generally considered to be minor cellular components of limited importance. However, research over the last decade has shown that sphingolipids play key roles in many aspects of plant biology, including reproduction, development and also biotic and abiotic stress. Sphingolipids play an important role as structural components of membranes and have been shown to be enriched in membrane microdomains synonomous with so-called lipid rafts. In addition to their structural role, sphingolipid metabolites are, by analogy with other non-plant systems, likely to act as signaling compounds. This emerging area is discussed in this chapter and the evidence for sphingolipid signaling in plants is considered.

Keywords

Guard Cell Sphingosine Kinase Sphingolipid Metabolism Ceramide Synthesis Sphingolipid Biosynthesis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Reference

  1. Abbas HK, Tanaka T, Duke SO, Porter JK, Wray EM, Hodges L, Sessions AE, Wang E, Merrill AH Jr, Riley RT (1994) Fumonisin- and AAL-toxin-induced disruption of sphingolipid metabolism with accumulation of free sphingoid bases. Plant Physiol 106:1085–1093PubMedGoogle Scholar
  2. Assmann SM (2005) G proteins go green: a plant G protein signalling FAQ sheet. Science 310:71–73CrossRefPubMedGoogle Scholar
  3. Bach L, Michaelson LV, Haslam R, Bellec Y, Gissot L, Marion J, Da Costa M, Boutin JP, Miquel M, Tellier F, Domergue F, Markham JE, Beaudoin F, Napier JA, Faure JD (2008) The very-long-chain hydroxy fatty acyl-CoA dehydratase PASTICCINO2 is essential and limiting for plant development. Proc Natl Acad Sci 105:14727–14731CrossRefPubMedGoogle Scholar
  4. Beaudoin F, Wu X, Li F, Haslam RP, Markham JE, Zheng H, Napier JA, Kunst L (2009) Functional characterization of the Arabidopsis beta-ketoacyl-coenzyme A reductase candidates of the fatty acid elongase. Plant Physiol 150:1174–1191Google Scholar
  5. Beck JG, Mathieu D, Loudet C, Buchoux S, Dufourc EJ (2007) Plant sterols in “rafts”: a better way to regulate membrane thermal shocks. FASEB J 21:1714–1723CrossRefPubMedGoogle Scholar
  6. Beeler T, Bacikova D, Gable K, Hopkins L, Johnson C, Slife H, Dunn T (1998) The Saccharomyces cerevisiae TSC10/YBR265w gene encoding 3-ketosphinganine reductase is identified in a screen for temperature-sensitive suppressors of the Ca2 + -sensitive csg2Δ mutant. J Biol Chem 273:30688–30694CrossRefPubMedGoogle Scholar
  7. Boggs JM (1987) Lipid intermolecular hydrogen bonding: influence on structural organization and membrane function. Biochim Biophys Acta 906:353–404PubMedGoogle Scholar
  8. Borner GH, Sherrier DJ, Weimar T, Michaelson LV, Hawkins ND, Macaskill A, Napier JA, Beale MH, Lilley KS, Dupree P (2005) Analysis of detergent-resistant membranes in Arabidopsis. Evidence for plasma membrane lipid rafts. Plant Physiol 137:104–116CrossRefPubMedGoogle Scholar
  9. Bosson R, Conzelmann A (2007) Multiple functions of inositolphosphorylceramides in the formation and intracellular transport of glycosylphosphatidylinositol-anchored proteins in yeast. Biochem Soc Symp 74:199–209CrossRefPubMedGoogle Scholar
  10. Brodersen P, Petersen M, Pike HM, Olszak B, Skov S, Odum N, Jørgensen LB, Brown RE, Mundy J (2002) Knockout of Arabidopsis accelerated-cell-death11 encoding a sphingosine transfer protein causes activation of programmed cell death and defense. Genes Dev 16:490–502CrossRefPubMedGoogle Scholar
  11. Chen M, Han G, Dietrich CR, Dunn TM, Cahoon EB (2006) The essential nature of sphingolipids in plants as revealed by the functional identification and characterization of the Arabidopsis LCB1 subunit of serine palmitoyltransferase. Plant Cell 18:3576–3593CrossRefPubMedGoogle Scholar
  12. Chen M, Markham JE, Dietrich CR, Jaworski JG, Cahoon EB (2008) Sphingolipid long-chain base hydroxylation is important for growth and regulation of sphingolipid content and composition in Arabidopsis. Plant Cell 20:1862–1878CrossRefPubMedGoogle Scholar
  13. Coursol S, Fan LM, Le Stunff H, Spiegel S, Gilroy S, Assmann SM (2003) Sphingolipid signalling in Arabidopsis guard cells involves heterotrimeric G proteins. Nature 423:651–654CrossRefPubMedGoogle Scholar
  14. Coursol S, Le Stunff H, Lynch DV, Gilroy S, Assmann SM, Spiegel S (2005) Arabidopsis sphingosine kinase and the effects of phytosphingosine-1-phosphate on stomatal aperture. Plant Physiol 137:724–737CrossRefPubMedGoogle Scholar
  15. Dietrich CR, Han G, Chen M, Berg RH, Dunn TM, Cahoon EB (2008) Loss-of-function mutations and inducible RNAi suppression of Arabidopsis LCB2 genes reveal the critical role of sphingolipids in gametophytic and sporophytic cell viability. Plant J. 54:284–298CrossRefPubMedGoogle Scholar
  16. Dunn TM, Lynch DV, Michaelson LV, Napier JA (2004) A post-genomic approach to understanding sphingolipid metabolism in Arabidopsis thaliana. Ann Bot 93:483–497CrossRefPubMedGoogle Scholar
  17. Endo K, Akiyama T, Kobayashi S, Okada M (1996) Degenerative spermatocyte, a novel gene encoding a transmembrane protein required for the initiation of meiosis in Drosophila spermatogenesis. Mol Gen Genet 253:157–165CrossRefPubMedGoogle Scholar
  18. Gable K, Garton S, Napier JA, Dunn TM (2004) Functional characterization of the Arabidopsis thaliana orthologue of Tsc13p, the enoyl reductase of the yeast microsomal fatty acid elongating system. J Exp Bot 55:543–545CrossRefPubMedGoogle Scholar
  19. Guillas I, Kirchman PA, Chuard R, Pfefferli M, Jiang JC, Jazwinski SM, Conzelmann A (2001) C26-CoA-dependent ceramide synthesis of Saccharomyces cerevisiae is operated by Lag1p and Lac1p. EMBO J 20:2655–2665CrossRefPubMedGoogle Scholar
  20. Hanada K (2003) Serine palmitoyltransferase, a key enzyme of sphingolipid metabolism. Biochim Biophys Acta 1632:16–30PubMedGoogle Scholar
  21. Hannun YA, Loomis CR, Merrill AH Jr, Bell RM (1986) Sphingosine inhibition of protein kinase C activity and of phorbol dibutyrate binding in vitro and in human platelets. J Biol Chem 261:12604–12609PubMedGoogle Scholar
  22. Huwiler A, Kolter T, Pfeilschifter J, Sandhoff K (2000) Physiology and pathophysiology of sphingolipid metabolism and signalling. Biochim Biophys Acta 1485:63–99PubMedGoogle Scholar
  23. Imai H, Ohnishi M, Hotsubo K, Kojima M, Ito S (1997) Sphingoid base composition of cerebrosides from plant leaves. Biosci Biotechnol Biochem 61:351–353CrossRefGoogle Scholar
  24. Imai H, Yamamoto K, Shibahara A, Miyatani S, Nakayama T (2000) Determining double-bond positions in monoenoic 2-hydroxy fatty acids of glucosylceramides by gas chromatography-mass spectrometry. Lipids 35:233–236CrossRefPubMedGoogle Scholar
  25. Karlsson KA (1970) Sphingolipid long chain bases. Lipids 5:878–891CrossRefPubMedGoogle Scholar
  26. Kawaguchi M, Imai H, Naoe M, Yasui Y, Ohnishi M (2000) Cerebrosides in grapevine leaves: distinct composition of sphingoid bases among the grapevine species having different tolerances to freezing temperature. Biosci Biotechnol Biochem 64:1271–1273CrossRefPubMedGoogle Scholar
  27. Lefebvre B, Furt F, Hartmann MA, Michaelson LV, Carde JP, Sargueil-Boiron F, Rossignol M, Napier JA, Cullimore J, Bessoule JJ, Mongrand S (2007) Characterization of lipid rafts from Medicago truncatula root plasma membranes: a proteomic study reveals the presence of a raft-associated redox system. Plant Physiol 144:402–418CrossRefPubMedGoogle Scholar
  28. Lester RL, Dickson RC (1993) Sphingolipids with inositolphosphate-containing head groups. Adv Lipid Res 26:253–274PubMedGoogle Scholar
  29. Liang H, Yao N, Song JT, Luo S, Lu H, Greenberg JT (2003) Ceramides modulate programmed cell death in plants. Genes Dev 17:2636–2641CrossRefPubMedGoogle Scholar
  30. Lynch D (1993) Sphingolipids. In: Moore TS Jr (ed) Lipid metabolism in plants. CRC, Boca Raton, FL, pp 285–308Google Scholar
  31. Lynch DV, Dunn TM (2004) An introduction to plant sphingolipids. New Phytol 161:677–702CrossRefGoogle Scholar
  32. Lynch DV, Caffrey M, Hogan JL, Steponkus PL (1992) Calorimetric and x-ray diffraction studies of rye glucocerebroside mesomorphism. Biophys J 61:1289–1300CrossRefPubMedGoogle Scholar
  33. Markham JE, Jaworski JG (2007) Rapid measurement of sphingolipids from Arabidopsis thaliana by reversed-phase high-performance liquid chromatography coupled to electrospray ionization tandem mass spectrometry. Rapid Commun Mass Spectrom 21:1304–1314CrossRefPubMedGoogle Scholar
  34. Markham JE, Li J, Cahoon EB, Jaworski JG (2006) Separation and identification of major plant sphingolipid classes from leaves. J Biol Chem 281:22684–22694CrossRefPubMedGoogle Scholar
  35. Merrill AH Jr, Sweeley CC (1996) Sphingolipid metabolism and cell signalling. In: Vance DE, Vance JE (eds) New comprehensive biochemistry: biochemistry of lipids, lipoproteins, and membranes. Elsevier Science, Amsterdam, The Netherlands, pp 309–338CrossRefGoogle Scholar
  36. Michaelson LV, Zauner S, Markham JE, Haslam R, Desikan R, Mugford S, Albrecht S, Warnecke D, Sperling P, Heinz E, Napier JA (2009) Functional characterisation of a higher plant sphingolipid Δ4-desaturase: defining the role of sphingosine and sphingosine-1-phosphate in Arabidopsis thaliana. Plant Physiol 149:487–498CrossRefPubMedGoogle Scholar
  37. Mongrand S, Morel J, Laroche J, Claverol S, Carde JP, Hartmann MA, Bonneu M, Simon-Plas F, Lessire R, Bessoule JJ (2004) Lipid rafts in higher plant cells: purification and characterization of Triton X-100-insoluble microdomains from tobacco plasma membrane. J Biol Chem 279:36277–36286CrossRefPubMedGoogle Scholar
  38. Munro S (2003) Lipid rafts: elusive or illusive? Cell 115:377–388Google Scholar
  39. Napier JA, Michaelson LV, Dunn TM (2002) A new class of lipid desaturase central to sphingolipid biosynthesis and signalling. Trends Plant Sci 7:475–478CrossRefPubMedGoogle Scholar
  40. Ng CK, Carr K, McAinsh MR, Powell B, Hetherington AM (2001) Drought-induced guard cell signal transduction involves sphingosine-1-phosphate. Nature 410:596–599CrossRefPubMedGoogle Scholar
  41. Nishikawa M, Hosokawa K, Ishiguro M, Minamioka H, Tamura K, Hara-Nishimura I, Takahashi Y, Shimazaki K, Imai H (2008) Degradation of sphingoid long-chain base 1-phosphates (LCB-1Ps): functional characterization and expression of AtDPL1 encoding LCB-1P lyase involved in the dehydration stress response in Arabidopsis. Plant Cell Physiol 49:1758–1763CrossRefPubMedGoogle Scholar
  42. Norberg P, Nilsson R, Nyiredy S, Liljenberg C (1996) Glucosylceramides of oat root plasma membranes-physicochemical behaviour in natural and in model systems. Biochim Biophys Acta 1299:80–86PubMedGoogle Scholar
  43. Obeid LM, Linardic CM, Karolak LA, Hannun YA (1993) Programmed cell death induced by ceramide. Science 259:1769–1771CrossRefPubMedGoogle Scholar
  44. Oskouian B, Saba JD (2004) Death and taxis: what non-mammalian models tell us about sphingosine-1-phosphate. Semin Cell Dev Biol 15:529–540CrossRefPubMedGoogle Scholar
  45. Perfus-Barbeoch L, Jones AM, Assmann SM (2004) Plant heterotrimeric G protein function: insights from Arabidopsis and rice mutants. Curr Opin Plant Biol 7:719–731CrossRefPubMedGoogle Scholar
  46. Peskan T, Westermann M, Oelmüller R (2000) Identification of low-density Triton X-100-insoluble plasma membrane microdomains in higher plants. Eur J Biochem 267:6989–6995CrossRefPubMedGoogle Scholar
  47. Phan VH, Herr DR, Panton D, Fyrst H, Saba JD, Harris GL (2007) Disruption of sphingolipid metabolism elicits apoptosis-associated reproductive defects in Drosophila. Dev Biol 309:329–341CrossRefPubMedGoogle Scholar
  48. Pyne S, Pyne NJ (2000) Sphingosine 1-phosphate signalling in mammalian cells. Biochem J 349:385–402CrossRefPubMedGoogle Scholar
  49. Ryan PR, Liu Q, Sperling P, Dong B, Franke S, Delhaize E (2007) A higher plant Δ8 sphingolipid desaturase with a preference for (Z)-isomer formation confers aluminum tolerance to yeast and plants. Plant Physiol 144:1968–1977CrossRefPubMedGoogle Scholar
  50. Saba JD, Hla T (2004) Point-counterpoint of sphingosine 1-phosphate metabolism. Circ Res 94:724–734CrossRefPubMedGoogle Scholar
  51. Schorling S, Vallee B, Barz WP, Riezman H, Oesterhelt D (2001) Lag1p and Lac1p are essential for the acyl-CoA-dependent ceramide synthase reaction in Saccharomyces cerevisiae. Mol Biol Cell 12:3417–3427PubMedGoogle Scholar
  52. Shi L, Bielawski J, Mu J, Dong H, Teng C, Zhang J, Yang X, Tomishige N, Hanada K, Hannun YA, Zuo J (2007) Involvement of sphingoid bases in mediating reactive oxygen intermediate production and programmed cell death in Arabidopsis. Cell Res 17:1030–1040CrossRefPubMedGoogle Scholar
  53. Simons K, Ikonen E (1997) Functional rafts in cell membranes. Nature 387:569–572CrossRefPubMedGoogle Scholar
  54. Spassieva SD, Markham JE, Hille J (2002) The plant disease resistance gene Asc-1 prevents disruption of sphingolipid metabolism during AAL-toxin-induced programmed cell death. Plant J 32:561–572CrossRefPubMedGoogle Scholar
  55. Sperling P, Heinz E (2003) Plant sphingolipids: structural diversity, biosynthesis, first genes and functions. Biochim Biophys Acta 1632:1–15PubMedGoogle Scholar
  56. Sperling P, Ternes P, Moll H, Franke S, Zahringer U, Heinz E (2001) Functional characterization of sphingolipid C4-hydroxylase genes from Arabidopsis thaliana. FEBS Lett 494:90–94CrossRefPubMedGoogle Scholar
  57. Sperling P, Franke S, Lüthje S, Heinz E (2005) Are glucocerebrosides the predominant sphingolipids in plant plasma membranes? Plant Physiol Biochem 43:1031–1038CrossRefPubMedGoogle Scholar
  58. Spiegel S, Milstien S (2003) Sphingosine-1-phosphate: an enigmatic signalling lipid. Nat Rev Mol Cell Biol 4:397–407CrossRefPubMedGoogle Scholar
  59. Steponkus PL, Lynch DV (1989) Freeze/thaw-induced destabilization of the plasma membrane and the effects of cold acclimation. J Bioenerg Biomembr 21:21–41CrossRefPubMedGoogle Scholar
  60. Sullards MC, Lynch DV, Merrill AH, Adams J (2000) Structure determination of soybean and wheat glucosylceramides by tandem mass spectrometry. J Mass Spectrom 35:347–353CrossRefPubMedGoogle Scholar
  61. Tafesse FG, Ternes P, Holthuis JC (2006) The multigenic sphingomyelin synthase family. J Biol Chem 281:29421–29425CrossRefPubMedGoogle Scholar
  62. Tavernier E, Lê Quôc D, Lê Quôc K (1993) Lipid composition of the vacuolar membrane of Acer pseudoplatanus cultured cells. Biochim Biophys Acta 1167:242–247PubMedGoogle Scholar
  63. Teng C, Dong H, Shi L, Deng Y, Mu J, Zhang J, Yang X, Zuo J (2008) Serine palmitoyltransferase, a key enzyme for de novo synthesis of sphingolipids, is essential for male gametophyte development in Arabidopsis. Plant Physiol 146:1322–1332CrossRefPubMedGoogle Scholar
  64. Ternes P, Sperling P, Albrecht S, Franke S, Cregg JM, Warnecke D, Heinz E (2006) Identification of fungal sphingolipid C9-methyltransferases by phylogenetic profiling. J Biol Chem 281:5582–5592CrossRefPubMedGoogle Scholar
  65. Tonon T, Sayanova O, Michaelson LV, Qing R, Harvey D, Larson TR, Li Y, Napier JA, Graham IA (2005) Fatty acid desaturases from the microalga Thalassiosira pseudonana. FEBS J 272:3401–3412CrossRefPubMedGoogle Scholar
  66. Uemura M, Steponkus PL (1994) A contrast of the plasma membrane lipid composition of oat and rye leaves in relation to freezing tolerance. Plant Physiol 104:479–496PubMedGoogle Scholar
  67. Uemura M, Joseph RA, Steponkus PL (1995) Cold acclimation of Arabidopsis thaliana (effect on plasma membrane lipid composition and freeze-induced lesions). Plant Physiol 109:15–30PubMedGoogle Scholar
  68. Ullah H, Chen JG, Young JC, Im KH, Sussman MR, Jones AM (2001) Modulation of cell proliferation by heterotrimeric G protein in Arabidopsis. Science 292:2066–2069CrossRefPubMedGoogle Scholar
  69. Vahisalu T, Kollist H, Wang YF, Nishimura N, Chan WY, Valerio G, Lamminmäki A, Brosché M, Moldau H, Desikan R, Schroeder JI, Kangasjärvi J (2008) SLAC1 is required for plant guard cell S-type anion channel function in stomatal signalling. Nature 452:487–491CrossRefPubMedGoogle Scholar
  70. Vallee B, Riezman H (2005) Lip1p: a novel subunit of acyl-CoA ceramide synthase. EMBO J 24:730–741CrossRefPubMedGoogle Scholar
  71. Venable ME, Lee JY, Smyth MJ, Bielawska A, Obeid LM (1995) Role of ceramide in cellular senescence. J Biol Chem 270:30701–30708CrossRefPubMedGoogle Scholar
  72. Wang H, Li J, Bostock RM, Gilchrist DG (1996) Apoptosis: a functional paradigm for programmed plant cell death induced by a host-selective phytotoxin and invoked during development. Plant Cell 8:375–391CrossRefPubMedGoogle Scholar
  73. Wang XQ, Ullah H, Jones AM, Assmann SM (2001) G protein regulation of ion channels and abscisic acid signaling in Arabidopsis guard cells. Science 292:2070–2072CrossRefPubMedGoogle Scholar
  74. Wang W, Yang X, Tangchaiburana S, Ndeh R, Markham JE, Tsegaye Y, Dunn TM, Wang GL, Bellizzi M, Parsons JF, Morrissey D, Bravo JE, Lynch DV, Xiao S. (2008) An inositolphosphorylceramide synthase is involved in regulation of plant programmed cell death associated with defense in Arabidopsis. Plant Cell 20:3163–3179 Google Scholar
  75. Worrall D, Liang YK, Alvarez S, Holroyd GH, Spiegel S, Panagopulos M, Gray JE, Hetherington AM (2008) Involvement of sphingosine kinase in plant cell signalling. Plant J 56(1):64–72CrossRefPubMedGoogle Scholar
  76. Xiong TC, Coursol S, Grat S, Ranjeva R, Mazars C (2008) Sphingolipid metabolites selectively elicit increases in nuclear calcium concentration in cell suspension cultures and in isolated nuclei of tobacco. Cell Calc 43:29–37CrossRefGoogle Scholar
  77. Yoshida S, Uemura M (1986) Lipid composition of plasma membranes and tonoplasts isolated from etiolated seedlings of Mung Bean (Vigna radiata L.). Plant Physiol 82:807–812CrossRefPubMedGoogle Scholar
  78. Zheng H, Rowland O, Kunst L (2005) Disruptions of the Arabidopsis Enoyl-CoA reductase gene reveal an essential role for very-long-chain fatty acid synthesis in cell expansion during plant morphogenesis. Plant Cell 17:1467–1481CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  1. 1.Biological Chemistry DepartmentRothamsted ResearchHertsUK

Personalised recommendations