Advertisement

Oxylipin Signaling and Plant Growth

  • Alina Mosblech
  • Ivo Feussner
  • Ingo HeilmannEmail author
Chapter
Part of the Plant Cell Monographs book series (CELLMONO, volume 16)

Abstract

Oxylipins are derived from the oxidation of polyunsaturated fatty acids. Further conversion of the resulting fatty acid hydroperoxides gives rise to a multitude of oxylipin classes, including hydroxy-, oxo-, or keto fatty acids, volatile aldehydes, and the phytohormone, jasmonic acid (JA). Oxylipins may be structurally further diversified by esterification, i.e., to plastidial glycolipids, Arabidopsides, or conjugation to amino acids. Oxylipin research so far has focused mainly on the investigation of jasmonates and their roles in wound signaling and plant development. In contrast, the physiological roles of other oxylipins are by far less well understood, in part because enzymes responsible for their formation are not well characterized. This chapter aims at giving an overview of plant oxylipin signaling, highlighting recent discoveries of new roles for different oxylipins in the regulation of developmental or adaptational processes.

Keywords

Jasmonic Acid Arbuscular Mycorrhiza Fatty Acid Hydroperoxide Divinyl Ether Jasmonic Acid Level 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

We thank Dr. Cornelia Göbel for critical reading of this manuscript. We are gratefully acknowledging financial support through the German Research Foundation (DFG) to I. H. and I. F.

References

  1. Alexandre J, Lassalles JP (1990) Effect of d-myo-inositol 1, 4, 5-trisphosphate on the electrical properties of the red beet vacuole membrane. Plant Physiol 93:837–840PubMedCrossRefGoogle Scholar
  2. Almeras E, Stolz S, Vollenweider S, Reymond P, Mene-Saffrane L, Farmer EE (2003) Reactive electrophile species activate defense gene expression in Arabidopsis. Plant J 34:205–216PubMedCrossRefGoogle Scholar
  3. Andersson MX, Hamberg M, Kourtchenko O, Brunnstrom A, McPhail KL, Gerwick WH, Gobel C, Feussner I, Ellerstrom M (2006) Oxylipin profiling of the hypersensitive response in Arabidopsis thaliana. Formation of a novel oxo-phytodienoic acid-containing galactolipid, arabidopside E. J Biol Chem 281:31528–31537PubMedCrossRefGoogle Scholar
  4. Andreasson E, Jenkins T, Brodersen P, Thorgrimsen S, Petersen NH, Zhu S, Qiu JL, Micheelsen P, Rocher A, Petersen M, Newman MA, Bjorn Nielsen H, Hirt H, Somssich I, Mattsson O, Mundy J (2005) The MAP kinase substrate MKS1 is a regulator of plant defense responses. EMBO J 24:2579–2589PubMedCrossRefGoogle Scholar
  5. Bate NJ, Rothstein SJ (1998) C6-volatiles derived from the lipoxygenase pathway. Plant J 16:561–569PubMedCrossRefGoogle Scholar
  6. Berridge MJ (2005) Unlocking the secrets of cell signaling. Annu Rev Physiol 67:1–21PubMedCrossRefGoogle Scholar
  7. Blee E (1998) Phytooxylipins and plant defense reactions. Prog Lipid Res 37:33–72PubMedCrossRefGoogle Scholar
  8. Blee E (2002) Impact of phyto-oxylipins in plant defense. Trends Plant Sci 7:315–322PubMedCrossRefGoogle Scholar
  9. Bonaventure G, Gfeller A, Proebsting WM, Hortensteiner S, Chetelat A, Martinoia E, Farmer EE (2007a) A gain-of-function allele of TPC1 activates oxylipin biogenesis after leaf wounding in Arabidopsis. Plant J 49:889–898PubMedCrossRefGoogle Scholar
  10. Bonaventure G, Gfeller A, Rodriguez VM, Armand F, Farmer EE (2007b) The fou2 gain-of-function allele and the wild-type allele of two pore channel 1 contribute to different extents or by different mechanisms to defense gene expression in Arabidopsis. Plant Cell Physiol 48:1775–1789PubMedCrossRefGoogle Scholar
  11. Böttcher C, Weiler EW (2007) Cyclo-Oxylipin-galactolipids in plants: occurrence and dynamics. Planta 226:629–637PubMedCrossRefGoogle Scholar
  12. Browse J (2005) Jasmonate: an oxylipin signal with many roles in plants. Vitam Horm 72:431–456PubMedCrossRefGoogle Scholar
  13. Buseman CM, Tamura P, Sparks AA, Baughman EJ, Maatta S, Zhao J, Roth MR, Esch SW, Shah J, Williams TD, Welti R (2006) Wounding stimulates the accumulation of glycerolipids containing oxophytodienoic acid and dinor-oxophytodienoic acid in Arabidopsis leaves. Plant Physiol 142:28–39PubMedCrossRefGoogle Scholar
  14. Chini A, Fonseca S, Fernandez G, Adie B, Chico JM, Lorenzo O, Garcia-Casado G, Lopez-Vidriero I, Lozano FM, Ponce MR, Micol JL, Solano R (2007) The JAZ family of repressors is the missing link in jasmonate signalling. Nature 448:666–671PubMedCrossRefGoogle Scholar
  15. D'Alessandro M, Turlings TC (2005) In situ modification of herbivore-induced plant odors: a novel approach to study the attractiveness of volatile organic compounds to parasitic wasps. Chem Senses 30:739–753PubMedCrossRefGoogle Scholar
  16. De Leon IP, Sanz A, Hamberg M, Castresana C (2002) Involvement of the Arabidopsis alpha-DOX1 fatty acid dioxygenase in protection against oxidative stress and cell death. Plant J 29:61–62PubMedCrossRefGoogle Scholar
  17. De Moraes CM, Lewis WJ, Pare PW, Alborn HT, Tumlinson JH (1998) Herbivore-infested plants selectively attract parasitoids. Nature 393:570–573CrossRefGoogle Scholar
  18. Delker C, Stenzel I, Hause B, Miersch O, Feussner I, Wasternack C (2006) Jasmonate biosynthesis in Arabidopsis thaliana–enzymes, products, regulation. Plant Biol 8:297–306PubMedCrossRefGoogle Scholar
  19. Devoto A, Ellis C, Magusin A, Chang HS, Chilcott C, Zhu T, Turner JG (2005) Expression profiling reveals COI1 to be a key regulator of genes involved in wound- and methyl jasmonate-induced secondary metabolism, defence, and hormone interactions. Plant Mol Biol 58:497–513PubMedCrossRefGoogle Scholar
  20. Ellis C, Karafyllidis I, Turner JG (2002a) Constitutive activation of jasmonate signalling in an Arabidopsis mutant correlates with enhanced resistance to Erysiphe cichoracearum, Pseudomonas syringae, and Myzus persicae. Mol Plant Microbe Interact 15:1025–1030PubMedCrossRefGoogle Scholar
  21. Ellis C, Karafyllidis I, Wasternack C, Turner JG (2002b) The Arabidopsis mutant cev1 links cell wall signalling to jasmonate and ethylene responses. Plant Cell 14:1557–1566PubMedCrossRefGoogle Scholar
  22. Engelberth J, Alborn HT, Schmelz EA, Tumlinson JH (2004) Airborne signals prime plants against insect herbivore attack. Proc Natl Acad Sci USA 101:1781–1785PubMedCrossRefGoogle Scholar
  23. Esterbauer H, Schaur RJ, Zollner H (1991) Chemistry and biochemistry of 4-hydroxynonenal, malonaldehyde and related aldehydes. Free Radic Biol Med 11:81–128PubMedCrossRefGoogle Scholar
  24. Falkenstein E, Groth B, Mithöfer A, Weiler EW (1991) Methyl jasmonate and -linolenic acid are potent inducers of tendril coiling. Planta 185:316–322CrossRefGoogle Scholar
  25. Farmer EE, Ryan CA (1990) Interplant communication: airborne methyl jasmonate induces synthesis of proteinase inhibitors in plant leaves. Proc Natl Acad Sci USA 87:7713–7716PubMedCrossRefGoogle Scholar
  26. Fatouros NE, van Loon JJ, Hordijk KA, Smid HM, Dicke M (2005) Herbivore-induced plant volatiles mediate in-flight host discrimination by parasitoids. J Chem Ecol 31:2033–2047PubMedCrossRefGoogle Scholar
  27. Feussner I, Wasternack C (2002) The lipoxygenase pathway. Annu Rev Plant Biol 53:275–297PubMedCrossRefGoogle Scholar
  28. Feussner I, Wasternack C, Kindl H, Kuhn H (1995) Lipoxygenase-catalyzed oxygenation of storage lipids is implicated in lipid mobilization during germination. Proc Natl Acad Sci USA 92:11849–11853PubMedCrossRefGoogle Scholar
  29. Feussner I, Balkenhohl TJ, Porzel A, Kühn H, Wasternack C (1997) Structural elucidation of oxygenated storage lipids in cucumber cotyledons.Implication of lipid body lipoxygenase in lipid mobilization during germination. J Biol Chem 272:21635–21641PubMedCrossRefGoogle Scholar
  30. Feys B, Benedetti CE, Penfold CN, Turner JG (1994) Arabidopsis mutants selected for resistance to the phytotoxin coronatine are male sterile, insensitive to methyl jasmonate, and resistant to a bacterial pathogen. Plant Cell 6:751–759PubMedCrossRefGoogle Scholar
  31. Gidda SK, Varin L (2006) Biochemical and molecular characterization of flavonoid 7-sulfotransferase from Arabidopsis thaliana. Plant Physiol Biochem 44:628–636PubMedCrossRefGoogle Scholar
  32. Gidda SK, Miersch O, Levitin A, Schmidt J, Wasternack C, Varin L (2003) Biochemical and molecular characterization of a hydroxyjasmonate sulfotransferase from Arabidopsis thaliana. J Biol Chem 278:17895–17900PubMedCrossRefGoogle Scholar
  33. Glazebrook J (2005) Contrasting mechanisms of defense against biotrophic and necrotrophic pathogens. Annu Rev Phytopathol 43:205–227PubMedCrossRefGoogle Scholar
  34. Grechkin A (1998) Recent developments in biochemistry of the plant lipoxygenase pathway. Prog Lipid Res 37:317–352PubMedCrossRefGoogle Scholar
  35. Hamberg M, Sanz A, Rodriguez MJ, Calvo AP, Castresana C (2003) Activation of the fatty acid alpha-dioxygenase pathway during bacterial infection of tobacco leaves. Formation of oxylipins protecting against cell death. J Biol Chem 278:51796–51805PubMedCrossRefGoogle Scholar
  36. Hamberg M, Ponce de Leon I, Rodriguez MJ, Castresana C (2005) Alpha-dioxygenases. Biochem Biophys Res Commun 338:169–174PubMedCrossRefGoogle Scholar
  37. Hause B, Stenzel I, Miersch O, Maucher H, Kramell R, Ziegler J, Wasternack C (2000) Tissue-specific oxylipin signature of tomato flowers: allene oxide cyclase is highly expressed in distinct flower organs and vascular bundles. Plant J 24:113–126PubMedCrossRefGoogle Scholar
  38. Hause B, Maier W, Miersch O, Kramell R, Strack D (2002) Induction of jasmonate biosynthesis in arbuscular mycorrhizal barley roots. Plant Physiol 130:1213–1220PubMedCrossRefGoogle Scholar
  39. He Y, Gan S (2001) Identical promoter elements are involved in regulation of the OPR1 gene by senescence and jasmonic acid in Arabidopsis. Plant Mol Biol 47:595–605PubMedCrossRefGoogle Scholar
  40. He Y, Fukushige H, Hildebrand DF, Gan S (2002) Evidence supporting a role of jasmonic acid in Arabidopsis leaf senescence. Plant Physiol 128:876–884PubMedCrossRefGoogle Scholar
  41. Hisamatsu Y, Goto N, Hasegawa K, Shigemori H (2003) Arabidopsides A and B, two new oxylipins from Arabidopsis thaliana. Tetrahedron Lett 44:5553–5556CrossRefGoogle Scholar
  42. Hisamatsu Y, Goto N, Sekiguchi M, Hasegawa K, Shigemori H (2005) Oxylipins arabidopsides C and D from Arabidopsis thaliana. J Nat Prod 68:600–603PubMedCrossRefGoogle Scholar
  43. Hisamatsu Y, Goto N, Hasegawa K, Shigemori H (2006) Senescence-promoting effect of arabidopside A. Z Naturforsch [C] 61:363–366Google Scholar
  44. Isayenkov S, Fester T, Hause B (2004) Rapid determination of fungal colonization and arbuscule formation in roots of Medicago truncatula using real-time (RT) PCR. J Plant Physiol 161:1379–1383PubMedCrossRefGoogle Scholar
  45. Isayenkov S, Mrosk C, Stenzel I, Strack D, Hause B (2005) Suppression of allene oxide cyclase in hairy roots of Medicago truncatula reduces jasmonate levels and the degree of mycorrhization with Glomus intraradices. Plant Physiol 139:1401–1410PubMedCrossRefGoogle Scholar
  46. Kessler A, Baldwin IT (2002) Plant responses to insect herbivory: the emerging molecular analysis. Annu Rev Plant Biol 53:299–328PubMedCrossRefGoogle Scholar
  47. Kishimoto K, Matsui K, Ozawa R, Takabayashi J (2006) Components of C6-aldehyde-induced resistance in Arabidopsis thaliana against a necrotrophic fungal pathogen, Botrytis cinerea. Plant Sci 170:715–723CrossRefGoogle Scholar
  48. Klipp E, Liebermeister W (2006) Mathematical modeling of intracellular signalling pathways. BMC Neurosci 7(Suppl 1):S10Google Scholar
  49. Kloek AP, Verbsky ML, Sharma SB, Schoelz JE, Vogel J, Klessig DF, Kunkel BN (2001) Resistance to Pseudomonas syringae conferred by an Arabidopsis thaliana coronatine-insensitive (coi1) mutation occurs through two distinct mechanisms. Plant J 26:509–522PubMedCrossRefGoogle Scholar
  50. Knight MR, Read ND, Campbell AK, Trewavas AJ (1993) Imaging calcium dynamics in living plants using semi-synthetic recombinant aequorins. J Cell Biol 121:83–90PubMedCrossRefGoogle Scholar
  51. Koda Y, Omer EA, Yoshihara T, Shibata H, Sakamura S, Okazawa Y (1988) Isolation of a specific tuber-inducing substance from potato leaves. Plant Cell Physiol 29:1047–1051Google Scholar
  52. Kourtchenko O, Andersson MX, Hamberg M, Brunnstrom A, Gobel C, McPhail KL, Gerwick WH, Feussner I, Ellerstrom M (2007) Oxo-phytodienoic acid-containing galactolipids in Arabidopsis: jasmonate signalling dependence. Plant Physiol 145:1658–1669PubMedCrossRefGoogle Scholar
  53. Kramell R, Miersch O, Atzorn R, Parthier B, Wasternack C (2000) Octadecanoid-derived alteration of gene expression and the “oxylipin signature” in stressed barley leaves. Implications for different signalling pathways. Plant Physiol 123:177–188PubMedCrossRefGoogle Scholar
  54. Kunkel BN, Brooks DM (2002) Cross talk between signalling pathways in pathogen defense. Curr Opin Plant Biol 5:325–331PubMedCrossRefGoogle Scholar
  55. Leon J, Rojo E, Titarenko E, Sanchez-Serrano JJ (1998) Jasmonic acid-dependent and -independent wound signal transduction pathways are differentially regulated by Ca2+/calmodulin in Arabidopsis thaliana. Mol Gen Genet 258:412–419PubMedCrossRefGoogle Scholar
  56. Leon J, Rojo E, Sanchez-Serrano JJ (2001) Wound signalling in plants. J Exp Bot 52:1–9PubMedCrossRefGoogle Scholar
  57. Li L, Zhao Y, McCaig BC, Wingerd BA, Wang J, Whalon ME, Pichersky E, Howe GA (2004) The tomato homolog of CORONATINE-INSENSITIVE1 is required for the maternal control of seed maturation, jasmonate-signaled defense responses, and glandular trichome development. Plant Cell 16:126–143PubMedCrossRefGoogle Scholar
  58. Liavonchanka A, Feussner I (2006) Lipoxygenases: occurrence, functions and catalysis. J Plant Physiol 163:348–357PubMedCrossRefGoogle Scholar
  59. Mosblech A, König S, Stenzel I, Grzeganek P, Feussner I, Heilmann I (2008) Phosphoinositide and inositolpolyphosphate-signalling in defense responses of Arabidopsis thaliana challenged by mechanical wounding. Mol Plant 1:249–261PubMedCrossRefGoogle Scholar
  60. Mueller MJ (2004) Archetype signals in plants: the phytoprostanes. Curr Opin Plant Biol 7:441–448PubMedCrossRefGoogle Scholar
  61. Nakajyo H, Hisamatsu Y, Sekiguchi M, Goto N, Hasegawa K, Shoigemori H (2007) Arabidopside F, a new oxylipin from Arabidopsis thaliana. ChemInform 38. doi: 10.1002/chin.200716205Google Scholar
  62. Ohashi T, Ito Y, Okada M, Sakagami Y (2005) Isolation and stomatal opening activity of two oxylipins from Ipomoea tricolor. Bioorg Med Chem Lett 15:263–265PubMedCrossRefGoogle Scholar
  63. Penninckx IA, Eggermont K, Terras FR, Thomma BP, De Samblanx GW, Buchala A, Metraux JP, Manners JM, Broekaert WF (1996) Pathogen-induced systemic activation of a plant defensin gene in Arabidopsis follows a salicylic acid-independent pathway. Plant Cell 8:2309–2323PubMedCrossRefGoogle Scholar
  64. Petersen M, Brodersen P, Naested H, Andreasson E, Lindhart U, Johansen B, Nielsen HB, Lacy M, Austin MJ, Parker JE, Sharma SB, Klessig DF, Martienssen R, Mattsson O, Jensen AB, Mundy J (2000) Arabidopsis map kinase 4 negatively regulates systemic acquired resistance. Cell 103:1111–1120PubMedCrossRefGoogle Scholar
  65. Prithiviraj B, Bais HP, Weir T, Suresh B, Najarro EH, Dayakar BV, Schweizer HP, Vivanco JM (2005) Down regulation of virulence factors of Pseudomonas aeruginosa by salicylic acid attenuates its virulence on Arabidopsis thaliana and Caenorhabditis elegans. Infect Immun 73:5319–5328PubMedCrossRefGoogle Scholar
  66. Quirino BF, Normanly J, Amasino RM (1999) Diverse range of gene activity during Arabidopsis thaliana leaf senescence includes pathogen-independent induction of defense-related genes. Plant Mol Biol 40:267–278PubMedCrossRefGoogle Scholar
  67. Reymond P, Weber H, Damond M, Farmer EE (2000) Differential gene expression in response to mechanical wounding and insect feeding in Arabidopsis. Plant Cell 12:707–720PubMedCrossRefGoogle Scholar
  68. Rusterucci C, Montillet JL, Agnel JP, Battesti C, Alonso B, Knoll A, Bessoule JJ, Etienne P, Suty L, Blein JP, Triantaphylides C (1999) Involvement of lipoxygenase-dependent production of fatty acid hydroperoxides in the development of the hypersensitive cell death induced by cryptogein on tobacco leaves. J Biol Chem 274:36446–36455PubMedCrossRefGoogle Scholar
  69. Schilmiller AL, Howe GA (2005) Systemic signalling in the wound response. Curr Opin Plant Biol 8:369–377PubMedCrossRefGoogle Scholar
  70. Schüssler A, Schwarzott D, Walker C (2001) A new fungal phylum, the Glomeromycota: phylogeny and evolution. Mycol Res 105:1413–1421CrossRefGoogle Scholar
  71. Schwartz MA, Baron V (1999) Interactions between mitogenic stimuli, or, a thousand and one connections. Curr Opin Cell Biol 11:197–202PubMedCrossRefGoogle Scholar
  72. Sembdner G, Atzorn R, Schneider G (1994) Plant hormone conjugation. Plant Mol Biol 26:1459–1481PubMedCrossRefGoogle Scholar
  73. Seo JA, Proctor RH, Plattner RD (2001) Characterization of four clustered and coregulated genes associated with fumonisin biosynthesis in Fusarium verticillioides. Fungal Genet Biol 34:155–165PubMedCrossRefGoogle Scholar
  74. Shiojiri K, Kishimoto K, Ozawa R, Kugimiya S, Urashimo S, Arimura G, Horiuchi J, Nishioka T, Matsui K, Takabayashi J (2006a) Changing green leaf volatile biosynthesis in plants: an approach for improving plant resistance against both herbivores and pathogens. Proc Natl Acad Sci USA 103:16672–16676PubMedCrossRefGoogle Scholar
  75. Shiojiri K, Ozawa R, Matsui K, Kishimoto K, Kugimiya S, Takabayashi J (2006b) Role of the lipoxygenase/lyase pathway of host-food plants in the host searching behavior of two parasitoid species, Cotesia glomerata and Cotesia plutellae. J Chem Ecol 32:969–979PubMedCrossRefGoogle Scholar
  76. Spiteller P, Kern W, Reiner J, Spiteller G (2001) Aldehydic lipid peroxidation products derived from linoleic acid. Biochim Biophys Acta 1531:188–208PubMedGoogle Scholar
  77. Staswick PE, Tiryaki I (2004) The oxylipin signal jasmonic acid is activated by an enzyme that conjugates it to isoleucine in Arabidopsis. Plant Cell 16:2117–2127PubMedCrossRefGoogle Scholar
  78. Staswick PE, Su W, Howell SH (1992) Methyl jasmonate inhibition of root growth and induction of a leaf protein are decreased in an Arabidopsis thaliana mutant. Proc Natl Acad Sci USA 89:6837–6840PubMedCrossRefGoogle Scholar
  79. Stelmach BA, Muller A, Hennig P, Laudert D, Andert L, Weiler EW (1998) Quantitation of the octadecanoid 12-oxo-phytodienoic acid, a signalling compound in plant mechanotransduction. Phytochemistry 47:539–546PubMedCrossRefGoogle Scholar
  80. Stelmach BA, Muller A, Hennig P, Gebhardt S, Schubert-Zsilavecz M, Weiler EW (2001) A novel class of oxylipins, sn1-O-(12-oxophytodienoyl)-sn2-O-(hexadecatrienoyl)-monogalactosyl Diglyceride, from Arabidopsis thaliana. J Biol Chem 276:12832–12838PubMedCrossRefGoogle Scholar
  81. Stenzel I, Hause B, Miersch O, Kurz T, Maucher H, Weichert H, Ziegler J, Feussner I, Wasternack C (2003) Jasmonate biosynthesis and the allene oxide cyclase family of Arabidopsis thaliana. Plant Mol Biol 51:895–911PubMedCrossRefGoogle Scholar
  82. Stevenson-Paulik J, Bastidas RJ, Chiou ST, Frye RA, York JD (2005) Generation of phytate-free seeds in Arabidopsis through disruption of inositol polyphosphate kinases. Proc Natl Acad Sci USA 102:12612–12617PubMedCrossRefGoogle Scholar
  83. Stumpe M, Feussner I (2006) Formation of oxylipins by CYP74 enzymes. Phytochem Rev 5:347–357CrossRefGoogle Scholar
  84. Stumpe M, Carsjens JG, Stenzel I, Gobel C, Lang I, Pawlowski K, Hause B, Feussner I (2005) Lipid metabolism in arbuscular mycorrhizal roots of Medicago truncatula. Phytochemistry 66:781–791PubMedCrossRefGoogle Scholar
  85. Stumpe M, Gobel C, Demchenko K, Hoffmann M, Klosgen RB, Pawlowski K, Feussner I (2006) Identification of an allene oxide synthase (CYP74C) that leads to formation of alpha-ketols from 9-hydroperoxides of linoleic and linolenic acid in below-ground organs of potato. Plant J 47:883–896PubMedCrossRefGoogle Scholar
  86. Sun QP, Guo Y, Sun Y, Sun DY, Wang XJ (2006) Influx of extracellular Ca2+ involved in jasmonic-acid-induced elevation of [Ca2+]cyt and JR1 expression in Arabidopsis thaliana. J Plant Res 119:343–350PubMedCrossRefGoogle Scholar
  87. Suzuki M, Yamaguchi S, Iida T, Hashimoto I, Teranishi H, Mizoguchi M, Yano F, Todoroki Y, Watanabe N, Yokoyama M (2003) Endogenous alpha-ketol linolenic acid levels in short day-induced cotyledons are closely related to flower induction in Pharbitis nil. Plant Cell Physiol 44:35–43PubMedCrossRefGoogle Scholar
  88. Taki N, Sasaki-Sekimoto Y, Obayashi T, Kikuta A, Kobayashi K, Ainai T, Yagi K, Sakurai N, Suzuki H, Masuda T, Takamiya K, Shibata D, Kobayashi Y, Ohta H (2005) 12-oxo-phytodienoic acid triggers expression of a distinct set of genes and plays a role in wound-induced gene expression in Arabidopsis. Plant Physiol 139:1268–1283PubMedCrossRefGoogle Scholar
  89. Tan X, Calderon-Villalobos LI, Sharon M, Zheng C, Robinson CV, Estelle M, Zheng N (2007) Mechanism of auxin perception by the TIR1 ubiquitin ligase. Nature 446:640–645PubMedCrossRefGoogle Scholar
  90. Theodoulou FL, Job K, Slocombe SP, Footitt S, Holdsworth M, Baker A, Larson TR, Graham IA (2005) Jasmonic acid levels are reduced in COMATOSE ATP-binding cassette transporter mutants. Implications for transport of jasmonate precursors into peroxisomes. Plant Physiol 137:835–840PubMedCrossRefGoogle Scholar
  91. Thines B, Katsir L, Melotto M, Niu Y, Mandaokar A, Liu G, Nomura K, He SY, Howe GA, Browse J (2007) JAZ repressor proteins are targets of the SCF(COI1) complex during jasmonate signalling. Nature 448:661–665PubMedCrossRefGoogle Scholar
  92. Turner JG, Ellis C, Devoto A (2002) The jasmonate signal pathway. Plant Cell 14(Suppl):S153–S164Google Scholar
  93. Van Poecke RM, Posthumus MA, Dicke M (2001) Herbivore-induced volatile production by Arabidopsis thaliana leads to attraction of the parasitoid Cotesia rubecula: chemical, behavioral, and gene-expression analysis. J Chem Ecol 27:1911–1928PubMedCrossRefGoogle Scholar
  94. van Wees SC, de Swart EA, van Pelt JA, van Loon LC, Pieterse CM (2000) Enhancement of induced disease resistance by simultaneous activation of salicylate- and jasmonate-dependent defense pathways in Arabidopsis thaliana. Proc Natl Acad Sci USA 97:8711–8716PubMedCrossRefGoogle Scholar
  95. Vancanneyt G, Sanz C, Farmaki T, Paneque M, Ortego F, Castanera P, Sanchez-Serrano JJ (2001) Hydroperoxide lyase depletion in transgenic potato plants leads to an increase in aphid performance. Proc Natl Acad Sci U S A 98:8139–8144PubMedCrossRefGoogle Scholar
  96. Vellosillo T, Martinez M, Lopez MA, Vicente J, Cascon T, Dolan L, Hamberg M, Castresana C (2007) Oxylipins produced by the 9-lipoxygenase pathway in Arabidopsis regulate lateral root development and defense responses through a specific signalling cascade. Plant Cell 19:831–846PubMedCrossRefGoogle Scholar
  97. Veronese P, Nakagami H, Bluhm B, Abuqamar S, Chen X, Salmeron J, Dietrich RA, Hirt H, Mengiste T (2006) The membrane-anchored BOTRYTIS-INDUCED KINASE1 plays distinct roles in Arabidopsis resistance to necrotrophic and biotrophic pathogens. Plant Cell 18:257–273PubMedCrossRefGoogle Scholar
  98. Vollenweider S, Weber H, Stolz S, Chetelat A, Farmer EE (2000) Fatty acid ketodienes and fatty acid ketotrienes: Michael addition acceptors that accumulate in wounded and diseased Arabidopsis leaves. Plant J 24:467–476PubMedCrossRefGoogle Scholar
  99. Wasternack C (2007) Jasmonates: an update on biosynthesis, signal transduction and action in plant stress response, growth and development. Ann Bot 100:681–697PubMedCrossRefGoogle Scholar
  100. Wasternack C, Stenzel I, Hause B, Hause G, Kutter C, Maucher H, Neumerkel J, Feussner I, Miersch O (2006) The wound response in tomato–role of jasmonic acid. J Plant Physiol 163:297–306PubMedCrossRefGoogle Scholar
  101. Weaver LM, Gan S, Quirino B, Amasino RM (1998) A comparison of the expression patterns of several senescence-associated genes in response to stress and hormone treatment. Plant Mol Biol 37:455–469PubMedCrossRefGoogle Scholar
  102. Weichert H, Stenzel I, Berndt E, Wasternack C, Feussner I (1999) Metabolic profiling of oxylipins upon salicylate treatment in barley leaves–preferential induction of the reductase pathway by salicylate(1). FEBS Lett 464:133–137PubMedCrossRefGoogle Scholar
  103. Weichert H, Kohlmann M, Wasternack C, Feussner I (2000) Metabolic profiling of oxylipins upon sorbitol treatment in barley leaves. Biochem Soc Trans 28:861–862PubMedCrossRefGoogle Scholar
  104. Weiler EW (1997) Octadecanoid-mediated signal transduction in higher plants. Naturwissenschaften 84:340–349CrossRefGoogle Scholar
  105. Weiler EW, Laudert D, Stelmach BA, Hennig P, Biesgen C, Kubigsteltig I (1999) Octadecanoid and hexadecanoid signalling in plant defence. Novartis Found Symp 223:191–204PubMedGoogle Scholar
  106. Xie DX, Feys BF, James S, Nieto-Rostro M, Turner JG (1998) COI1: an Arabidopsis gene required for jasmonate-regulated defense and fertility. Science 280:1091–1094PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  1. 1.Department of Plant Biochemistry, Albrecht-von-Haller-Institute for Plant SciencesGeorg-August-University GöttingenGöttingenGermany

Personalised recommendations