Advertisement

Using Multicast Transfers in the Replica Migration Problem: Formulation and Scheduling Heuristics

  • Nikos Tziritas
  • Thanasis Loukopoulos
  • Petros Lampsas
  • Spyros Lalis
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5704)

Abstract

Performing replica migrations in the minimum possible time, also called the Replica Migration Problem (RMP), is crucial in distributed systems using replication. In this paper we tackle RMP when multicast transfers are available. We give a formal problem statement as a Mixed Integer Programming problem. It turns out that the problem is NP-hard. Therefore, we resolve to scheduling heuristics in order to find good solutions. Through simulations we identify different tradeoffs between performance and execution time and conclude on the most attractive approaches.

Keywords

Steiner Tree Multicast Tree Link Capacity Replication Scheme Schedule Heuristic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Khan, S., Ahmad, I.: Comparison and Analysis of Ten Static Heuristics-Based In-ternet Data Replication Techniques. JPDC 68(2), 113–136 (2008)zbMATHGoogle Scholar
  2. 2.
    Laoutaris, N., Smaragdakis, G., Oikonomou, K., Stavrakakis, I., Bestavros, A.: Dis-tributed Placement of Service Facilities in Large-Scale Networks. In: Proc. INFOCOM 2007, pp. 2144–2152.Google Scholar
  3. 3.
    Hall, J., Hartline, J., Karlin, A., Saia, J., Wilkes, J.: On Algorithms for Efficient Data Migration. In: Proc. SODA 2001, pp. 620–629 (2001)Google Scholar
  4. 4.
    Khuller, S., Kim, Y.A., Wan, Y.C.: Algorithms for Data Migration with Cloning. In: Proc. PODS 2004, pp. 448–461 (2004)Google Scholar
  5. 5.
    Killian, C., Vrable, M., Snoeren, A., Vahdat, A., Pasquale, J.: Brief Announcement: The Overlay Network Content Distribution Problem. In: Proc. PODC 2005, p. 98 (2005)Google Scholar
  6. 6.
    Tziritas, N., Loukopoulos, T., Lampsas, P., Lalis, S.: Formal Model and Scheduling Heuristics for the Replica Migration Problem. In: Luque, E., Margalef, T., Benítez, D. (eds.) Euro-Par 2008. LNCS, vol. 5168, pp. 305–314. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  7. 7.
    Desprez, F., Vernois, A.: Simultaneous Scheduling of Replication and Computation for Data-Intensive Applications on the Grid. J. Grid Computing 4(1), 19–31 (2006)CrossRefGoogle Scholar
  8. 8.
    Wu, B.Y., Chao, K.M.: Spanning Trees and Optimization Problems, ch. 7. Chapman & Hall/CRC, Boca Raton (2004)CrossRefzbMATHGoogle Scholar
  9. 9.
    Lau, L.C.: An Approximate Max-Steiner-Tree-Packing Min-Steiner-Cut Theorem. In: Proc. FOCS 2004, pp. 61–70 (2004)Google Scholar
  10. 10.
  11. 11.
    Medina, A., Lakhina, A., Matta, I., Byers, J.: BRITE: Boston University Representa-tive Internet Topology Generator (March 2001), http://cs-pub.bu.edu/brite/index.htm
  12. 12.
    Barabasi, A.L., Albert, R.: Emergence of Scaling in Random Networks. Science 286, 509–512 (1999)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Nikos Tziritas
    • 1
  • Thanasis Loukopoulos
    • 2
  • Petros Lampsas
    • 2
  • Spyros Lalis
    • 1
  1. 1.Dept. of Computer and Communication EngineeringUniv. of ThessalyVolosGreece
  2. 2.Dept. of Informatics and Computer Technology, Technological Educational Institute (TEI) of LamiaLamiaGreece

Personalised recommendations