Advertisement

Signaling Amplification at the Immunological Synapse

  • Antonella ViolaEmail author
  • Rita Lucia Contento
  • Barbara Molon
Chapter
Part of the Current Topics in Microbiology and Immunology book series (CT MICROBIOLOGY, volume 340)

Abstract

The immunological synapse is a dynamic structure, formed between a T cell and one or more antigen-presenting cells, characterized by lipid and protein segregation, signaling compartmentalization, and bidirectional information exchange through soluble and membrane-bound transmitters. In addition, the immunological synapse is the site where signals delivered by the T-cell receptors, adhesion molecules, as well as costimulatory and coinhibitory receptors are decoded and integrated. Signaling modulation and tunable activation thresholds allow T cells to interpret the context in which the antigen is presented, recognize infectious stimuli, and finally decide between activation and tolerance. In this review, we discuss some strategies used by membrane receptors to tune activation signals in T cells.

Keywords

Chemokine Receptor Immunological Synapse Membrane Raft CD28 Costimulation Immune Synapse 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

A.V. is supported by the Italian Association for Cancer Research (AIRC); Telethon; Ministero dell’Università e della Ricerca (MIUR); Istituto Superiore di Sanità; Alleanza Contro il Cancro; the DoD Army Medical Research, USA; the Cancer Research Institute of New York; the EMBO Young Investigator Program; E-rare 2007; EC FP7 HEALTH-F4-2008-201106.

References

  1. Acuto O, Michel F (2003) CD28-mediated co-stimulation: a quantitative support for TCR signalling. Nat Rev Immunol 3:939–951CrossRefPubMedGoogle Scholar
  2. Acuto O, Bartolo VD, Michel F (2008) Tailoring T-cell receptor signals by proximal negative feedback mechanisms. Nat Rev Immunol 8:699–712CrossRefPubMedGoogle Scholar
  3. Akira S, Uematsu S, Takeuchi O (2006) Pathogen recognition and innate immunity. Cell 124:783–801CrossRefPubMedGoogle Scholar
  4. Alegre ML, Frauwirth KA, Thompson CB (2001) T-cell regulation by CD28 and CTLA-4. Nat Rev Immunol 1:220–228CrossRefPubMedGoogle Scholar
  5. Bachmann MF, McKall-Faienza K, Schmits R, Bouchard D, Beach J, Speiser DE, Mak TW, Ohashi PS (1997) Distinct roles for LFA-1 and CD28 during activation of naive T cells: adhesion versus costimulation. Immunity 7:549–557CrossRefPubMedGoogle Scholar
  6. Balamuth F, Leitenberg D, Unternaehrer J, Mellman I, Bottomly K (2001) Distinct patterns of membrane microdomain partitioning in Th1 and th2 cells. Immunity 15:729–738CrossRefPubMedGoogle Scholar
  7. Blanco P, Palucka AK, Pascual V, Banchereau J (2008) Dendritic cells and cytokines in human inflammatory and autoimmune diseases. Cytokine Growth Factor Rev 19:41–52CrossRefPubMedGoogle Scholar
  8. Boss V, Talpade DJ, Murphy TJ (1996) Induction of NFAT-mediated transcription by Gq-coupled receptors in lymphoid and non-lymphoid cells. J Biol Chem 271:10429–10432CrossRefPubMedGoogle Scholar
  9. Brunet JF, Denizot F, Luciani MF, Roux-Dosseto M, Suzan M, Mattei MG, Golstein P (1987) A new member of the immunoglobulin superfamily – CTLA-4. Nature 328:267–270CrossRefPubMedGoogle Scholar
  10. Butte MJ, Keir ME, Phamduy TB, Sharpe AH, Freeman GJ (2007) Programmed death-1 ligand 1 interacts specifically with the B7-1 costimulatory molecule to inhibit T cell responses. Immunity 27:111–122CrossRefPubMedGoogle Scholar
  11. Calvo CR, Amsen D, Kruisbeek AM (1997) Cytotoxic T lymphocyte antigen 4 (CTLA-4) interferes with extracellular signal-regulated kinase (ERK) and Jun NH2-terminal kinase (JNK) activation, but does not affect phosphorylation of T cell receptor zeta and ZAP70. J Exp Med 186:1645–1653CrossRefPubMedGoogle Scholar
  12. Christinck ER, Luscher MA, Barber BH, Williams DB (1991) Peptide binding to class I MHC on living cells and quantitation of complexes required for CTL lysis. Nature 352:67–70CrossRefPubMedGoogle Scholar
  13. Chuang E, Fisher TS, Morgan RW, Robbins MD, Duerr JM, Vander Heiden MG, Gardner JP, Hambor JE, Neveu MJ, Thompson CB (2000) The CD28 and CTLA-4 receptors associate with the serine/threonine phosphatase PP2A. Immunity 13:313–322CrossRefPubMedGoogle Scholar
  14. Collins AV, Brodie DW, Gilbert RJ, Iaboni A, Manso-Sancho R, Walse B, Stuart DI, van der Merwe PA, Davis SJ (2002) The interaction properties of costimulatory molecules revisited. Immunity 17:201–210CrossRefPubMedGoogle Scholar
  15. Constantin G, Majeed M, Giagulli C, Piccio L, Kim JY, Butcher EC, Laudanna C (2000) Chemokines trigger immediate beta2 integrin affinity and mobility changes: differential regulation and roles in lymphocyte arrest under flow. Immunity 13:759–769CrossRefPubMedGoogle Scholar
  16. Contento RL, Molon B, Boularan C, Pozzan T, Manes S, Marullo S, Viola A (2008) CXCR4-CCR5: a couple modulating T cell functions. Proc Natl Acad Sci USA 105:10101–10106CrossRefPubMedGoogle Scholar
  17. Davis MM, Boniface JJ, Reich Z, Lyons D, Hampl J, Arden B, Chien Y (1998) Ligand recognition by alpha beta T cell receptors. Annu Rev Immunol 16:523–544CrossRefPubMedGoogle Scholar
  18. Dupre L, Aiuti A, Trifari S, Martino S, Saracco P, Bordignon C, Roncarolo MG (2002) Wiskott-Aldrich syndrome protein regulates lipid raft dynamics during immunological synapse formation. Immunity 17:157–166CrossRefPubMedGoogle Scholar
  19. Dustin ML, Springer TA (1989) T-cell receptor cross-linking transiently stimulates adhesiveness through LFA-1. Nature 341:619–624CrossRefPubMedGoogle Scholar
  20. Ebert PJ, Baker JF, Punt JA (2000) Immature CD4+CD8+ thymocytes do not polarize lipid rafts in response to TCR-mediated signals. J Immunol 165:5435–5442PubMedGoogle Scholar
  21. Flanagan LA, Chou J, Falet H, Neujahr R, Hartwig JH, Stossel TP (2001) Filamin A, the Arp2/3 complex, and the morphology and function of cortical actin filaments in human melanoma cells. J Cell Biol 155:511–517CrossRefPubMedGoogle Scholar
  22. Freeman GJ, Gribben JG, Boussiotis VA, Ng JW, Restivo VA Jr, Lombard LA, Gray GS, Nadler LM (1993) Cloning of B7–2: a CTLA-4 counter-receptor that costimulates human T cell proliferation. Science 262:909–911CrossRefPubMedGoogle Scholar
  23. Goldman DW, Chang FH, Gifford LA, Goetzl EJ, Bourne HR (1985) Pertussis toxin inhibition of chemotactic factor-induced calcium mobilization and function in human polymorphonuclear leukocytes. J Exp Med 162:145–156CrossRefPubMedGoogle Scholar
  24. Gomez-Mouton C, Lacalle RA, Mira E, Jimenez-Baranda S, Barber DF, Carrera AC, Martinez AC, Manes S (2004) Dynamic redistribution of raft domains as an organizing platform for signaling during cell chemotaxis. J Cell Biol 164:759–768CrossRefPubMedGoogle Scholar
  25. Guntermann C, Alexander DR (2002) CTLA-4 suppresses proximal TCR signaling in resting human CD4(+) T cells by inhibiting ZAP-70 Tyr(319) phosphorylation: a potential role for tyrosine phosphatases. J Immunol 168:4420–4429PubMedGoogle Scholar
  26. Harada Y, Ohgai D, Watanabe R, Okano K, Koiwai O, Tanabe K, Toma H, Altman A, Abe R (2003) A single amino acid alteration in cytoplasmic domain determines IL-2 promoter activation by ligation of CD28 but not inducible costimulator (ICOS). J Exp Med 197:257–262CrossRefPubMedGoogle Scholar
  27. Harding CV, Unanue ER (1990) Quantitation of antigen-presenting cell MHC class II/peptide complexes necessary for T-cell stimulation. Nature 346:574–576CrossRefPubMedGoogle Scholar
  28. Hathcock KS, Laszlo G, Pucillo C, Linsley P, Hodes RJ (1994) Comparative analysis of B7-1 and B7-2 costimulatory ligands: expression and function. J Exp Med 180:631–640CrossRefPubMedGoogle Scholar
  29. Hayashi K, Altman A (2006) Filamin A is required for T cell activation mediated by protein kinase C-theta. J Immunol 177:1721–1728PubMedGoogle Scholar
  30. Holdorf AD, Green JM, Levin SD, Denny MF, Straus DB, Link V, Changelian PS, Allen PM, Shaw AS (1999) Proline residues in CD28 and the Src homology (SH)3 domain of Lck are required for T cell costimulation. J Exp Med 190:375–384CrossRefPubMedGoogle Scholar
  31. Iezzi G, Karjalainen K, Lanzavecchia A (1998) The duration of antigenic stimulation determines the fate of naive and effector T cells. Immunity 8:89–95CrossRefPubMedGoogle Scholar
  32. Irvine DJ, Purbhoo MA, Krogsgaard M, Davis MM (2002) Direct observation of ligand recognition by T cells. Nature 419:845–849CrossRefPubMedGoogle Scholar
  33. Janeway CA Jr, Yagi J, Conrad PJ, Katz ME, Jones B, Vroegop S, Buxser S (1989) T-cell responses to Mls and to bacterial proteins that mimic its behavior. Immunol Rev 107:61–88CrossRefPubMedGoogle Scholar
  34. Jimenez-Baranda S, Gomez-Mouton C, Rojas A, Martinez-Prats L, Mira E, Ana Lacalle R, Valencia A, Dimitrov DS, Viola A, Delgado R, Martinez AC, Manes S (2007) Filamin-A regulates actin-dependent clustering of HIV receptors. Nat Cell Biol 9:838–846CrossRefPubMedGoogle Scholar
  35. Kane LP, Andres PG, Howland KC, Abbas AK, Weiss A (2001) Akt provides the CD28 costimulatory signal for up-regulation of IL-2 and IFN-gamma but not TH2 cytokines. Nat Immunol 2:37–44CrossRefPubMedGoogle Scholar
  36. Karpus WJ, Lukacs NW, Kennedy KJ, Smith WS, Hurst SD, Barrett TA (1997) Differential CC chemokine-induced enhancement of T helper cell cytokine production. J Immunol 158:4129–4136PubMedGoogle Scholar
  37. Keir ME, Butte MJ, Freeman GJ, Sharpe AH (2008) PD-1 and its ligands in tolerance and immunity. Annu Rev Immunol 26:677–704CrossRefPubMedGoogle Scholar
  38. Kovacs B, Maus MV, Riley JL, Derimanov GS, Koretzky GA, June CH, Finkel TH (2002) Human CD8+ T cells do not require the polarization of lipid rafts for activation and proliferation. Proc Natl Acad Sci USA 99:15006–15011CrossRefPubMedGoogle Scholar
  39. Krummel MF, Allison JP (1996) CTLA-4 engagement inhibits IL-2 accumulation and cell cycle progression upon activation of resting T cells. J Exp Med 183:2533–2540CrossRefPubMedGoogle Scholar
  40. Kundig TM, Shahinian A, Kawai K, Mittrucker HW, Sebzda E, Bachmann MF, Mak TW, Ohashi PS (1996) Duration of TCR stimulation determines costimulatory requirement of T cells. Immunity 5:41–52CrossRefPubMedGoogle Scholar
  41. Lanzavecchia A, Lezzi G, Viola A (1999) From TCR engagement to T cell activation: a kinetic view of T cell behavior. Cell 96:1–4CrossRefPubMedGoogle Scholar
  42. Latchman YE, Liang SC, Wu Y, Chernova T, Sobel RA, Klemm M, Kuchroo VK, Freeman GJ, Sharpe AH (2004) PD-L1-deficient mice show that PD-L1 on T cells, antigen-presenting cells, and host tissues negatively regulates T cells. Proc Natl Acad Sci USA 101:10691–10696CrossRefPubMedGoogle Scholar
  43. Linsley PS, Brady W, Urnes M, Grosmaire LS, Damle NK, Ledbetter JA (1991) CTLA-4 is a second receptor for the B cell activation antigen B7. J Exp Med 174:561–569CrossRefPubMedGoogle Scholar
  44. Liu Y, Witte S, Liu YC, Doyle M, Elly C, Altman A (2000) Regulation of protein kinase Ctheta function during T cell activation by Lck-mediated tyrosine phosphorylation. J Biol Chem 275:3603–3609CrossRefPubMedGoogle Scholar
  45. Medzhitov R, Janeway CA Jr (2002) Decoding the patterns of self and nonself by the innate immune system. Science 296:298–300CrossRefPubMedGoogle Scholar
  46. Molon B, Gri G, Bettella M, Gomez-Mouton C, Lanzavecchia A, Martinez AC, Manes S, Viola A (2005) T cell costimulation by chemokine receptors. Nat Immunol 6:465–471CrossRefPubMedGoogle Scholar
  47. Nishimura H, Nose M, Hiai H, Minato N, Honjo T (1999) Development of lupus-like autoimmune diseases by disruption of the PD-1 gene encoding an ITIM motif-carrying immunoreceptor. Immunity 11:141–151CrossRefPubMedGoogle Scholar
  48. Nishimura H, Okazaki T, Tanaka Y, Nakatani K, Hara M, Matsumori A, Sasayama S, Mizoguchi A, Hiai H, Minato N, Honjo T (2001) Autoimmune dilated cardiomyopathy in PD-1 receptor-deficient mice. Science 291:319–322CrossRefPubMedGoogle Scholar
  49. Olsson C, Riesbeck K, Dohlsten M, Michaelsson E (1999) CTLA-4 ligation suppresses CD28-induced NF-kappaB and AP-1 activity in mouse T cell blasts. J Biol Chem 274:14400–14405CrossRefPubMedGoogle Scholar
  50. Paccani SR, Boncristiano M, Patrussi L, Ulivieri C, Wack A, Valensin S, Hirst TR, Amedei A, Del Prete G, Telford JL, D'Elios MM, Baldari CT (2005) Defective Vav expression and impaired F-actin reorganization in a subset of patients with common variable immunodeficiency characterized by T-cell defects. Blood 106:626–634CrossRefPubMedGoogle Scholar
  51. Pages F, Ragueneau M, Rottapel R, Truneh A, Nunes J, Imbert J, Olive D (1994) Binding of phosphatidylinositol-3-OH kinase to CD28 is required for T-cell signalling. Nature 369:327–329CrossRefPubMedGoogle Scholar
  52. Park JH, Kim YG, Shaw M, Kanneganti TD, Fujimoto Y, Fukase K, Inohara N, Nunez G (2007) Nod1/RICK and TLR signaling regulate chemokine and antimicrobial innate immune responses in mesothelial cells. J Immunol 179:514–521PubMedGoogle Scholar
  53. Peggs KS, Quezada SA, Allison JP (2008) Cell intrinsic mechanisms of T-cell inhibition and application to cancer therapy. Immunol Rev 224:141–165CrossRefPubMedGoogle Scholar
  54. Perkins D, Wang Z, Donovan C, He H, Mark D, Guan G, Wang Y, Walunas T, Bluestone J, Listman J, Finn PW (1996) Regulation of CTLA-4 expression during T cell activation. J Immunol 156:4154–4159PubMedGoogle Scholar
  55. Pizzo P, Viola A (2004) Lipid rafts in lymphocyte activation. Microbes Infect 6:686–692CrossRefPubMedGoogle Scholar
  56. Raab M, Cai YC, Bunnell SC, Heyeck SD, Berg LJ, Rudd CE (1995) p56Lck and p59Fyn regulate CD28 binding to phosphatidylinositol 3-kinase, growth factor receptor-bound protein GRB-2, and T cell-specific protein-tyrosine kinase ITK: implications for T-cell costimulation. Proc Natl Acad Sci USA 92:8891–8895CrossRefPubMedGoogle Scholar
  57. Round JL, Tomassian T, Zhang M, Patel V, Schoenberger SP, Miceli MC (2005) Dlgh1 coordinates actin polymerization, synaptic T cell receptor and lipid raft aggregation, and effector function in T cells. J Exp Med 201:419–430CrossRefPubMedGoogle Scholar
  58. Schneider H, Downey J, Smith A, Zinselmeyer BH, Rush C, Brewer JM, Wei B, Hogg N, Garside P, Rudd CE (2006) Reversal of the TCR stop signal by CTLA-4. Science 313:1972–1975CrossRefPubMedGoogle Scholar
  59. Schuck S, Simons K (2004) Polarized sorting in epithelial cells: raft clustering and the biogenesis of the apical membrane. J Cell Sci 117:5955–5964CrossRefPubMedGoogle Scholar
  60. Serbina NV, Jia T, Hohl TM, Pamer EG (2008) Monocyte-mediated defense against microbial pathogens. Annu Rev Immunol 26:421–452CrossRefPubMedGoogle Scholar
  61. Shahinian A, Pfeffer K, Lee KP, Kundig TM, Kishihara K, Wakeham A, Kawai K, Ohashi PS, Thompson CB, Mak TW (1993) Differential T cell costimulatory requirements in CD28-deficient mice. Science 261:609–612CrossRefPubMedGoogle Scholar
  62. Shamri R, Grabovsky V, Gauguet JM, Feigelson S, Manevich E, Kolanus W, Robinson MK, Staunton DE, von Andrian UH, Alon R (2005) Lymphocyte arrest requires instantaneous induction of an extended LFA-1 conformation mediated by endothelium-bound chemokines. Nat Immunol 6:497–506CrossRefPubMedGoogle Scholar
  63. Stossel TP, Condeelis J, Cooley L, Hartwig JH, Noegel A, Schleicher M, Shapiro SS (2001) Filamins as integrators of cell mechanics and signalling. Nat Rev Mol Cell Biol 2:138–145CrossRefPubMedGoogle Scholar
  64. Su B, Jacinto E, Hibi M, Kallunki T, Karin M, Ben-Neriah Y (1994) JNK is involved in signal integration during costimulation of T lymphocytes. Cell 77:727–736CrossRefPubMedGoogle Scholar
  65. Sykulev Y, Joo M, Vturina I, Tsomides TJ, Eisen HN (1996) Evidence that a single peptide-MHC complex on a target cell can elicit a cytolytic T cell response. Immunity 4:565–571CrossRefPubMedGoogle Scholar
  66. Taub DD (1996) Chemokine-leukocyte interactions. The voodoo that they do so well. Cytokine Growth Factor Rev 7:355–376CrossRefPubMedGoogle Scholar
  67. Tavano R, Gri G, Molon B, Marinari B, Rudd CE, Tuosto L, Viola A (2004) CD28 and lipid rafts coordinate recruitment of Lck to the immunological synapse of human T lymphocytes. J Immunol 173:5392–5397PubMedGoogle Scholar
  68. Tavano R, Contento RL, Baranda SJ, Soligo M, Tuosto L, Manes S, Viola A (2006) CD28 interaction with filamin-A controls lipid raft accumulation at the T-cell immunological synapse. Nat Cell Biol 8:1270–1276CrossRefPubMedGoogle Scholar
  69. Teft WA, Kirchhof MG, Madrenas J (2006) A molecular perspective of CTLA-4 function. Annu Rev Immunol 24:65–97CrossRefPubMedGoogle Scholar
  70. Thelen M, Stein JV (2008) How chemokines invite leukocytes to dance. Nat Immunol 9:953–959CrossRefPubMedGoogle Scholar
  71. Tivol EA, Borriello F, Schweitzer AN, Lynch WP, Bluestone JA, Sharpe AH (1995) Loss of CTLA-4 leads to massive lymphoproliferation and fatal multiorgan tissue destruction, revealing a critical negative regulatory role of CTLA-4. Immunity 3:541–547CrossRefPubMedGoogle Scholar
  72. Tuosto L, Acuto O (1998) CD28 affects the earliest signaling events generated by TCR engagement. Eur J Immunol 28:2131–2142CrossRefPubMedGoogle Scholar
  73. Tybulewicz VL (2002) Chemokines and the immunological synapse. Immunology 106:287–288CrossRefPubMedGoogle Scholar
  74. van Vliet SJ, den Dunnen J, Gringhuis SI, Geijtenbeek TB, van Kooyk Y (2007) Innate signaling and regulation of Dendritic cell immunity. Curr Opin Immunol 19:435–440CrossRefPubMedGoogle Scholar
  75. Villalba M, Coudronniere N, Deckert M, Teixeiro E, Mas P, Altman A (2000) A novel functional interaction between Vav and PKCtheta is required for TCR-induced T cell activation. Immunity 12:151–160CrossRefPubMedGoogle Scholar
  76. Viola A (2001) The amplification of TCR signaling by dynamic membrane microdomains. Trends Immunol 22:322–327CrossRefPubMedGoogle Scholar
  77. Viola A, Lanzavecchia A (1996) T cell activation determined by T cell receptor number and tunable thresholds. Science 273:104–106CrossRefPubMedGoogle Scholar
  78. Viola A, Schroeder S, Sakakibara Y, Lanzavecchia A (1999) T lymphocyte costimulation mediated by reorganization of membrane microdomains. Science 283:680–682CrossRefPubMedGoogle Scholar
  79. Watanabe R, Harada Y, Takeda K, Takahashi J, Ohnuki K, Ogawa S, Ohgai D, Kaibara N, Koiwai O, Tanabe K, Toma H, Sugamura K, Abe R (2006) Grb2 and Gads exhibit different interactions with CD28 and play distinct roles in CD28-mediated costimulation. J Immunol 177:1085–1091PubMedGoogle Scholar
  80. Waterhouse P, Penninger JM, Timms E, Wakeham A, Shahinian A, Lee KP, Thompson CB, Griesser H, Mak TW (1995) Lymphoproliferative disorders with early lethality in mice deficient in Ctla-4. Science 270:985–988CrossRefPubMedGoogle Scholar
  81. Waterhouse P, Bachmann MF, Penninger JM, Ohashi PS, Mak TW (1997) Normal thymic selection, normal viability and decreased lymphoproliferation in T cell receptor-transgenic CTLA-4-deficient mice. Eur J Immunol 27:1887–1892CrossRefPubMedGoogle Scholar
  82. Werts C, le Bourhis L, Liu J, Magalhaes JG, Carneiro LA, Fritz JH, Stockinger S, Balloy V, Chignard M, Decker T, Philpott DJ, Ma X, Girardin SE (2007) Nod1 and Nod2 induce CCL5/RANTES through the NF-kappaB pathway. Eur J Immunol 37:2499–2508CrossRefPubMedGoogle Scholar
  83. Yokosuka T, Kobayashi W, Sakata-Sogawa K, Takamatsu M, Hashimoto-Tane A, Dustin ML, Tokunaga M, Saito T (2008) Spatiotemporal regulation of T cell costimulation by TCR-CD28 microclusters and protein kinase C theta translocation. Immunity 29:589–601CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Antonella Viola
    • 1
    Email author
  • Rita Lucia Contento
    • 2
  • Barbara Molon
    • 3
  1. 1.Laboratory of Adaptive Immunity, Department of Translational MedicineUniversity of Milan, I.R.C.C.S. Istituto Clinico HumanitasRozzanoItaly
  2. 2.Laboratory of Adaptive ImmunityI.R.C.C.S. Istituto Clinico HumanitasRozzanoItaly
  3. 3.Istituto Oncologico Veneto I.R.C.C.S.PaduaItaly

Personalised recommendations