A Metric Conceptual Space Algebra

  • Benjamin Adams
  • Martin Raubal
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5756)


The modeling of concepts from a cognitive perspective is important for designing spatial information systems that interoperate with human users. Concept representations that are built using geometric and topological conceptual space structures are well suited for semantic similarity and concept combination operations. In addition, concepts that are more closely grounded in the physical world, such as many spatial concepts, have a natural fit with the geometric structure of conceptual spaces. Despite these apparent advantages, conceptual spaces are underutilized because existing formalizations of conceptual space theory have focused on individual aspects of the theory rather than the creation of a comprehensive algebra. In this paper we present a metric conceptual space algebra that is designed to facilitate the creation of conceptual space knowledge bases and inferencing systems. Conceptual regions are represented as convex polytopes and context is built in as a fundamental element. We demonstrate the applicability of the algebra to spatial information systems with a proof-of-concept application.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ahlqvist, O.: A Parameterized Representation of Uncertain Conceptual Spaces. Transactions in GIS 8(4), 492–514 (2004)CrossRefGoogle Scholar
  2. 2.
    Ahlqvist, O., Ban, H.: Categorical Measurement Semantics: A New Second Space for Geography. Geography Compass 1(3), 536–555 (2007)CrossRefGoogle Scholar
  3. 3.
    Aisbett, J., Gibbon, G.: A general formulation of conceptual spaces as a meso level representation. Artificial Intelligence 133, 189–232 (2001)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Barsalou, L.: Situated simulation in the human conceptual system. Language and Cognitive Processes 5(6), 513–562 (2003)CrossRefGoogle Scholar
  5. 5.
    Central Intelligence Agency - The World Factbook (2009), https://www.cia.gov/library/publications/the-world-factbook/
  6. 6.
    Dantzig, G.B.: Linear Programming and Extensions. Princeton University Press, Princeton (1963)CrossRefMATHGoogle Scholar
  7. 7.
    Devore, J., Peck, R.: Statistics - The Exploration and Analysis of Data, 4th edn. Duxbury, Pacific Grove (2001)MATHGoogle Scholar
  8. 8.
    Fukuda, K.: Frequently Asked Questions in Polyhedral Computation (2004), http://www.ifor.math.ethz.ch/~fukuda/polyfaq/polyfaq.html
  9. 9.
    Gärdenfors, P.: Conceptual Spaces: The Geometry of Thought. MIT Press, Cambridge (2000)Google Scholar
  10. 10.
    Gärdenfors, P.: How to Make the Semantic Web More Semantic. In: Varzi, A., Vieu, L. (eds.) Formal Ontology in Information Systems, Proceedings of the Third International Conference (FOIS 2004). Frontiers in Artificial Intelligence and Applications, vol. 114, pp. 153–164. IOS Press, Amsterdam (2004)Google Scholar
  11. 11.
    Gärdenfors, P.: Conceptual Spaces as a Framework for Knowledge Representation. Mind and Matter 2, 9–27 (2004)Google Scholar
  12. 12.
    Gärdenfors, P.: Representing actions and functional properties in conceptual spaces. In: Ziemke, T., Zlatev, J., Frank, R. (eds.) Body, Language and Mind, pp. 167–195. Mouton de Gruyter, Berlin (2007)Google Scholar
  13. 13.
    Gärdenfors, P., Williams, M.: Reasoning About Categories in Conceptual Spaces. In: Proceedings of the Fourteenth International Joint Conference on Artificial Intelligence, pp. 385–392. Morgan Kaufmann, San Francisco (2001)Google Scholar
  14. 14.
    Grünbaum, P.: Convex Polytopes. In: Kaibel, V., Klee, V., Ziegler, G. (eds.), 2nd edn., Springer, New York (2003)Google Scholar
  15. 15.
    Harnad, S.: Categorical Perception: The Groundwork of Cognition. Cambridge University Press, Cambridge (1987)Google Scholar
  16. 16.
    Janowicz, K., Raubal, M.: Affordance-Based Similarity Measurement for Entity Types. In: Winter, S., Duckham, M., Kulik, L., Kuipers, B. (eds.) COSIT 2007. LNCS, vol. 4736, pp. 133–151. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  17. 17.
    Janowicz, K., Raubal, M., Schwering, A., Kuhn, W.: Semantic Similarity Measurement and Geospatial Applications. Transactions in GIS 12(6), 651–659 (2008)CrossRefGoogle Scholar
  18. 18.
    Johannesson, M.: The Problem of Combining Integral and Separable Dimensions, Lund, Sweden. Lund University Cognitive Studies, p. 16 (2002)Google Scholar
  19. 19.
    Keßler, C.: Similarity measurement in context. In: Kokinov, B., Richardson, D.C., Roth-Berghofer, T.R., Vieu, L. (eds.) CONTEXT 2007. LNCS, vol. 4635, pp. 277–290. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  20. 20.
    Lakoff, G.: Cognitive Semantics. In: Eco, U., Santambrogio, M., Violi, P. (eds.) Meaning and Mental Representations, pp. 119–154. Indiana University Press, Bloomington (1988)Google Scholar
  21. 21.
    Mark, D., Freksa, C., Hirtle, S., Lloyd, R., Tversky, B.: Cognitive models of geographical space. International Journal of Geographical Information Science 13(8), 747–774 (1999)CrossRefGoogle Scholar
  22. 22.
    Montello, D., Freundschuh, S.: Cognition of Geographic Information. In: McMaster, R., Usery, E. (eds.) A research agenda for geographic information science, pp. 61–91. CRC Press, Boca Raton (2005)Google Scholar
  23. 23.
    Nocedal, J., Wright, S.J.: Numerical Optimization. Springer, New York (1999)CrossRefMATHGoogle Scholar
  24. 24.
    Rasch, G.: On General Laws and the Meaning of Measurement in Psychology. In: Proceedings of the Fourth Berkeley Symposium on Mathematical Statistics and Probability, IV, pp. 321–334. University of California Press, Berkeley (1961)Google Scholar
  25. 25.
    Raubal, M.: Formalizing Conceptual Spaces. In: Varzi, A., Vieu, L. (eds.) Formal Ontology in Information Systems. Proceedings of the Third International Conference (FOIS 2004), pp. 153–164. IOS Press, Amsterdam (2004)Google Scholar
  26. 26.
    Raubal, M.: Representing Concepts in Time. In: Freksa, C., Newcombe, N.S., Gärdenfors, P., Wölfl, S. (eds.) Spatial Cognition VI. LNCS, vol. 5248, pp. 328–343. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  27. 27.
    Rickard, J.T.: A concept geometry for conceptual spaces. Fuzzy Optimal Decision Making 5, 311–329 (2006)MathSciNetCrossRefMATHGoogle Scholar
  28. 28.
    Rosch, E.: Cognitive Representations of Semantic Categories. Journal of Experimental Psychology: General 104, 192–232 (1975)CrossRefGoogle Scholar
  29. 29.
    Schwering, A.: Approaches to Semantic Similarity Measurement for Geo-Spatial Data: A Survey. Transactions in GIS 12(1), 5–29 (2008)CrossRefGoogle Scholar
  30. 30.
    Schwering, A., Raubal, M.: Measuring Semantic Similarity between Geospatial Conceptual Regions. In: Rodríguez, M.A., Cruz, I., Levashkin, S., Egenhofer, M.J. (eds.) GeoS 2005. LNCS, vol. 3799, pp. 90–106. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  31. 31.
    Shepard, R.N.: Toward a universal law of generalization for psychological science. Science 237, 1317–1323 (1987)MathSciNetCrossRefMATHGoogle Scholar
  32. 32.
    Stevens, S.: On the Theory of Scales of Measurement. Science 103, 677–680 (1946)CrossRefMATHGoogle Scholar
  33. 33.
    Tanasescu, V.: Spatial Semantics in Difference Spaces. In: Winter, S., Duckham, M., Kulik, L., Kuipers, B. (eds.) COSIT 2007. LNCS, vol. 4736, pp. 96–115. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  34. 34.
    Tversky, A.: Features of Similarity. Psychological Review 84(4), 327–352 (1977)CrossRefGoogle Scholar
  35. 35.
    UNDP (United Nations Development Program): Human Development Report 2007/2008. Palgrave Macmillan, New York (2007)Google Scholar
  36. 36.
    Winter, S., Raubal, M., Nothegger, C.: Focalizing Measures of Salience for Wayfinding. In: Meng, L., Zipf, A., Reichenbacher, T. (eds.) Map-based Mobile Services – Theories, Methods and Implementations, pp. 127–142. Springer, Berlin (2005)Google Scholar
  37. 37.
    World Resources Institute: EarthTrends: Environmental Information. World Resources Institute, Washington, D.C (2006), http://earthtrends.wri.org

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Benjamin Adams
    • 1
  • Martin Raubal
    • 1
  1. 1.Departments of Computer Science and GeographyUniversity of CaliforniaSanta Barbara

Personalised recommendations