Skip to main content

Admissible Strategies in Infinite Games over Graphs

  • Conference paper
Mathematical Foundations of Computer Science 2009 (MFCS 2009)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5734))

Abstract

We consider games played on finite graphs, whose objective is to obtain a trace belonging to a given set of accepting traces. We focus on the states from which Player 1 cannot force a win. We compare several criteria for establishing what is the preferable behavior of Player 1 from those states, eventually settling on the notion of admissible strategy.

As the main result, we provide a characterization of the goals admitting positional admissible strategies. In addition, we derive a simple algorithm for computing such strategies for various common goals, and we prove the equivalence between the existence of positional winning strategies and the existence of positional subgame perfect strategies.

This work was supported by the MIUR PRIN Project 2007-9E5KM8.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alur, R., Henzinger, T.A., Kupferman, O.: Alternating-time temporal logic. In: Proc. 38th IEEE Symp. Found. of Comp. Sci., pp. 100–109. IEEE Computer Society Press, Los Alamitos (1997)

    Google Scholar 

  2. Abadi, M., Lamport, L., Wolper, P.: Realizable and unrealizable concurrent program specifications. In: Ronchi Della Rocca, S., Ausiello, G., Dezani-Ciancaglini, M. (eds.) ICALP 1989. LNCS, vol. 372, pp. 1–17. Springer, Heidelberg (1989)

    Chapter  Google Scholar 

  3. Baselice, S., Bonatti, P.A., Faella, M.: On interoperable trust negotiation strategies. In: POLICY 2007: 8th IEEE International Workshop on Policies for Distributed Systems and Networks. IEEE Computer Society, Los Alamitos (2007)

    Google Scholar 

  4. Berwanger, D.: Admissibility in infinite games. In: Thomas, W., Weil, P. (eds.) STACS 2007. LNCS, vol. 4393, pp. 188–199. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  5. de Alfaro, L., Faella, M., Majumdar, R., Raman, V.: Code aware resource management. In: EMSOFT 2005: 5th Intl. ACM Conference on Embedded Software, pp. 191–202. ACM Press, New York (2005)

    Google Scholar 

  6. de Alfaro, L., Henzinger, T.A.: Interface theories for component-based design. In: Henzinger, T.A., Kirsch, C.M. (eds.) EMSOFT 2001. LNCS, vol. 2211, pp. 148–165. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  7. Dziembowski, S., Jurdziński, M., Walukiewicz, I.: How much memory is needed to win infinite games? In: LICS. IEEE Computer Society, Los Alamitos (1997)

    Google Scholar 

  8. Emerson, E.A., Jutla, C.S.: Tree automata, mu-calculus and determinacy (extended abstract). In: Proc. 32nd IEEE Symp. Found. of Comp. Sci., pp. 368–377. IEEE Computer Society Press, Los Alamitos (1991)

    Google Scholar 

  9. Gimbert, H., Zielonka, W.: Games where you can play optimally without any memory. In: Abadi, M., de Alfaro, L. (eds.) CONCUR 2005. LNCS, vol. 3653, pp. 428–442. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  10. Kremer, S., Raskin, J.-F.: A game-based verification of non-repudiation and fair exchange protocols. In: Larsen, K.G., Nielsen, M. (eds.) CONCUR 2001. LNCS, vol. 2154, pp. 551–565. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  11. Osborne, M.J., Rubinstein, A.: A Course in Game Theory. MIT Press, Cambridge (1994)

    MATH  Google Scholar 

  12. Pnueli, A., Rosner, R.: On the synthesis of a reactive module. In: Proceedings of the 16th Annual Symposium on Principles of Programming Languages, pp. 179–190. ACM Press, New York (1989)

    Google Scholar 

  13. Thomas, W.: On the synthesis of strategies in infinite games. In: Mayr, E.W., Puech, C. (eds.) STACS 1995. LNCS, vol. 900, pp. 1–13. Springer, Heidelberg (1995)

    Chapter  Google Scholar 

  14. Zielonka, W.: Infinite games on finitely coloured graphs with applications to automata on infinite trees. Theoretical Computer Science 200, 135–183 (1998)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Faella, M. (2009). Admissible Strategies in Infinite Games over Graphs. In: Královič, R., Niwiński, D. (eds) Mathematical Foundations of Computer Science 2009. MFCS 2009. Lecture Notes in Computer Science, vol 5734. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-03816-7_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-03816-7_27

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-03815-0

  • Online ISBN: 978-3-642-03816-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics