Skip to main content

Few Product Gates But Many Zeros

  • Conference paper
Mathematical Foundations of Computer Science 2009 (MFCS 2009)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5734))

  • 800 Accesses

Abstract

A d-gem is a { + , − ,×}-circuit having very few ×-gates and computing from {x} ∪ ℤ a univariate polynomial of degree d having d distinct integer roots. We introduce d-gems because they could help factoring integers and because their existence for infinitely many d would blatantly disprove a variant of the Blum-Cucker-Shub-Smale conjecture. A natural step towards validating the conjecture would thus be to rule out d-gems for large d. Here we construct d-gems for several values of d up to 55. Our 2n-gems for n ≤ 4 are skew, that is, each { + , − }-gate adds an integer. We prove that skew 2n-gems if they exist require n { + , − }-gates, and that these for n ≥ 5 would imply new solutions to the Prouhet-Tarry-Escott problem in number theory. By contrast, skew d-gems over the real numbers are shown to exist for every d.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Blum, L., Cucker, F., Shub, M., Smale, S.: Complexity and Real Computation. Springer, Heidelberg (1997)

    MATH  Google Scholar 

  • Borodin, A., Moenck, B.: Fast modular transforms. Journal of Computer and Systems Science 8(3), 366–386 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  • Borwein, A., Ingalls, C.: The Prouhet-Tarry-Escott Problem Revisited. Enseign. Math. 40, 3–27 (1994)

    MathSciNet  MATH  Google Scholar 

  • Bremner, A.: When can (((X 2 − P)2) − Q)2 − R)2 − S 2 split into linear factors? Experimental Mathematics 17(4), 385–390 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  • Bürgisser, P.: On implications between P-NP-hypotheses: Decision versus computation in algebraic complexity. In: Sgall, J., Pultr, A., Kolman, P. (eds.) MFCS 2001. LNCS, vol. 2136, pp. 3–17. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  • Cheng, Q.: Straight Line Programs and Torsion Points on Elliptic Curves. In: Comput. Complex, vol. 12(3-4), pp. 150–161. Birkhauser Verlag, Basel (2004)

    Google Scholar 

  • Crandall, R.: Topics in advanced scientic computation, TELOS, the Electronic Library of Science. Springer, New York (1996)

    Book  Google Scholar 

  • Crandall, R., Pomerance, C.: Primes numbers: a computational perspective. Springer, New York (2001)

    Book  MATH  Google Scholar 

  • Dilcher, K.: Nested squares and evaluations of integer products. Experimental Mathematics 9(3), 369–372 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  • Dolwart, H., Brown, O.: The Tarry-Escott problem. Proc. Amer. Math. Soc. 44, 613–626 (1937)

    MathSciNet  MATH  Google Scholar 

  • von zur Gathen, J., Gerhard, J.: Modern Computer Algebra, 2nd edn. Cambridge University Press, Cambridge (2003)

    MATH  Google Scholar 

  • Knuth, D.: The art of computer programming, 2nd edn. Seminumerical algorithms, vol. 2. Addison-Wesley, Reading (1969) (1981)

    MATH  Google Scholar 

  • Lipton, R.: Straight-line complexity and integer factorization. In: Huang, M.-D.A., Adleman, L.M. (eds.) ANTS 1994. LNCS, vol. 877, pp. 71–79. Springer, Heidelberg (1994)

    Chapter  Google Scholar 

  • Paterson, M., Stockmeyer, L.: On the number of nonscalar multiplications necessary to evaluate polynomials. SIAM J. Computing 2(1), 60–66 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  • Rojas, M.: A Direct Ultrametric Approach to Additive Complexity and the Shub-Smale Tau Conjecture (2003), http://arxiv.org/abs/math/0304100

  • Rosen, K.: Elementary number theory and its applications, 3rd edn. Addison-Wesley, Reading (1993)

    MATH  Google Scholar 

  • Shuwen, C.: The PTE Problem, http://euler.free.fr/eslp/TarryPrb.htm

  • Smale, S.: Mathematical problems for the next century. In: Arnold, V., Atiyah, M., Lax, P., Mazur, B. (eds.) Mathematics: Frontiers and Perspectives 2000. AMS, Providence (2000)

    Google Scholar 

  • Strassen, V.: Einige Resultate über Berechnungskomplexität. Jahresberichte der DMV 78, 1–8 (1976)

    MATH  Google Scholar 

  • Uspensky, J.V.: Theory of Equations. McGraw-Hill, New York (1948)

    Google Scholar 

  • Weisstein, E.: The Prouhet-Tarry-Escott Problem, MathWorld–Wolfram (2009), http://mathworld.wolfram.com/Prouhet-Tarry-EscottProblem.html

  • http://wims.unice.fr/wims/en_tool~number~twosquares.en.html (1999)

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Borchert, B., McKenzie, P., Reinhardt, K. (2009). Few Product Gates But Many Zeros. In: Královič, R., Niwiński, D. (eds) Mathematical Foundations of Computer Science 2009. MFCS 2009. Lecture Notes in Computer Science, vol 5734. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-03816-7_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-03816-7_15

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-03815-0

  • Online ISBN: 978-3-642-03816-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics