Markerless 3D Face Tracking

  • Christian Walder
  • Martin Breidt
  • Heinrich Bülthoff
  • Bernhard Schölkopf
  • Cristóbal Curio
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5748)

Abstract

We present a novel algorithm for the markerless tracking of deforming surfaces such as faces. We acquire a sequence of 3D scans along with color images at 40Hz. The data is then represented by implicit surface and color functions, using a novel partition-of-unity type method of efficiently combining local regressors using nearest neighbor searches. Both these functions act on the 4D space of 3D plus time, and use temporal information to handle the noise in individual scans. After interactive registration of a template mesh to the first frame, it is then automatically deformed to track the scanned surface, using the variation of both shape and color as features in a dynamic energy minimization problem. Our prototype system yields high-quality animated 3D models in correspondence, at a rate of approximately twenty seconds per timestep. Tracking results for faces and other objects are presented.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Zhang, L., Snavely, N., Curless, B., Seitz, S.M.: Spacetime faces: High-resolution capture for modeling and animation. In: ACM SIGGRAPH (August 2004)Google Scholar
  2. 2.
    Borshukov, G., Lewis, J.P.: Realistic human face rendering for the matrix reloaded. In: SIGGRAPH 2003 Sketches. ACM Press, New York (2003)Google Scholar
  3. 3.
    Wand, M., Jenke, P., Huang, Q., Bokeloh, M., Guibas, L., Schilling, A.: Reconstruction of deforming geometry from time-varying point clouds. In: SGP 2007: Proc. fifth Eurographics symp. on Geometry processing, Aire-la-Ville, Switzerland, ACM, Eurographics Association, pp. 49–58 (2007)Google Scholar
  4. 4.
    Huang, X., Zhang, S., Wang, Y., Metaxas, D., Samaras, D.: A hierarchical framework for high resolution facial expression tracking. In: Articulated and non-rigid motion, Washington, DC, USA, vol. 1. IEEE Computer Society, Los Alamitos (2004)Google Scholar
  5. 5.
    Ohtake, Y., Belyaev, A., Alexa, M., Turk, G., Seidel, H.P.: Multi-level partition of unity implicits. ACM Trans. on Graphics 22(3), 463–470 (2003)CrossRefGoogle Scholar
  6. 6.
    Desbrun, M., Meyer, M., Schröder, P., Barr, A.H.: Discrete differential-geometry operators for triangulated 2-manifolds. VisMath 2, 35–57 (2002)MATHGoogle Scholar
  7. 7.
    Kazhdan, M., Bolitho, M., Hoppe, H.: Poisson surface reconstruction. In: SGP 2006: Proceedings of the fourth Eurographics symposium on Geometry processing, Aire-la-Ville, Switzerland, Switzerland, ACM, Eurographics Association, pp. 61–70 (2006)Google Scholar
  8. 8.
    Botsch, M., Kobbelt, L.: An intuitive framework for real-time freeform modeling. In: SIGGRAPH, pp. 630–634. ACM, New York (2004)Google Scholar
  9. 9.
    Botsch, M., Sorkine, O.: On linear variational surface deformation methods. IEEE Trans. Visualization and Computer Graphics 14(1), 213–230 (2008)CrossRefGoogle Scholar
  10. 10.
    Merkwirth, C., Parlitz, U., Lauterborn, W.: Fast nearest neighbor searching for nonlinear signal processing. Phys. Rev. E 62(2), 2089–2097 (2000)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Christian Walder
    • 1
    • 2
  • Martin Breidt
    • 1
  • Heinrich Bülthoff
    • 1
  • Bernhard Schölkopf
    • 1
  • Cristóbal Curio
    • 1
  1. 1.Max Planck Institute for Biological CyberneticsTübingenGermany
  2. 2.Informatics and Mathematical ModellingTechnical University of DenmarkDenmark

Personalised recommendations