Image-Based Lunar Surface Reconstruction

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5748)


For the creation of a realistic 3 meter-sized relief globe of the Moon, a detailed height map of the entire lunar surface is required. Available height measurements of the Moon’s surface are too coarse by a factor of 15 for this purpose. The only publicly available source of high-resolution information are photographic images from the Lunar Orbiter IV mission in 1967. We present a shape-from-shading approach to plausibly increase the resolution of existing low-resolution height data, based on a single high-resolution photographic mosaic image of the Moon. The presented reconstruction approach is designed to be robust with respect to frequent imperfections of the photographic imagery. Aside from the automatic reconstruction of a complete detailed lunar surface height map, we give a qualitative validation by the reconstruction of lunar surface details from close-up photographs of the Apollo 15 landing site.


Landing Site Lunar Surface Height Data Photographic Image Lunar Orbiter 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Kirk, R., Archinal, B.A., Gaddis, L.R., Rosiek, M.R.: Carthography for lunar exploration: 2008 status and mission plans. European Planetary Science Congress 3 (2008)Google Scholar
  2. 2.
  3. 3.
    Archinal, B.A., Rosiek, M.R., Kirk, R.L., Redding, B.L.: Completion of the Unified Lunar Control Network 2005 and topographic model. In: 37th Annual Lunar and Planetary Science Conference, vol. 37, pp. 2310–2311 (2006)Google Scholar
  4. 4.
    Araki, H., Tazawa, S., Noda, H., Ishihara, Y., Goossens, S., Sasaki, S., Kawano, N., Kamiya, I., Otake, H., Oberst, J., Shum, C.: Lunar global shape and polar topography derived from Kaguya-LALT laser altimetry. Science 323(5916), 897–900 (2009)CrossRefGoogle Scholar
  5. 5.
    Rindfleisch, T.: Photometric method for lunar topography. Photogrammetric Engineering 32(2), 262–277 (1966)Google Scholar
  6. 6.
    Horn, B.K.P.: Shape from Shading: a Method for Obtaining the Shape of a Smooth Opaque Object from one View. PhD thesis, Department of Electrical Engineering, MIT (1970)Google Scholar
  7. 7.
    Horn, B.K.P.: Height and gradient from shading. Int. J. of Computer Vision 5(1), 37–75 (1990)CrossRefGoogle Scholar
  8. 8.
    Zhang, R., Tsai, P.-S., Cryer, J.E., Shah, M.: Shape-from-shading: a survey. IEEE T-PAMI 21(8), 690–706 (1999)CrossRefzbMATHGoogle Scholar
  9. 9.
    Scharstein, D., Szeliski, R.: A taxonomy and evaluation of dense two-frame stereo correspondence algorithms. Int. J. of Computer Vision 47(1), 7–42 (2002)CrossRefzbMATHGoogle Scholar
  10. 10.
    Heipke, C., Piechullek, C., Ebner, H.: Simulation studies and practical tests using multi-image shape from shading. J. of Photogrammetry and Remote Sensing 56(2), 139–148 (2001)CrossRefGoogle Scholar
  11. 11.
    Wöhler, C., Hafezi, K.: A general framework for three-dimensional surface reconstruction by self-consistent fusion of shading and shadow features. Pattern Recognition 38(7), 965–983 (2005)CrossRefGoogle Scholar
  12. 12.
    Lena, R., Wöhler, C., Bregante, M.T., Fattinnanzi, C.: A combined morphometric and spectrophotometric study of the complex lunar volcanic region in the south of Petavius. J. of the RASC 100(1), 14 (2006)Google Scholar
  13. 13.
    Wöhler, C., Lena, R., Lazzarotti, P., Phillips, J., Wirths, M., Pujic, Z.: A combined spectrophotometric and morphometric study of the lunar mare dome fields near Cauchy, Arago, Hortensius, and Milichius. Icarus 183(2), 237–264 (2006)CrossRefGoogle Scholar
  14. 14.
    Glencross, M., Ward, G.J., Jay, C., Liu, J., Melendez, F., Hubbold, R.: A perceptually validated model for surface depth hallucination. ACM Transactions on Graphics 27, 1–8 (2008)CrossRefGoogle Scholar
  15. 15.
    Worthington, P.L., Hancock, E.R.: New constraints on data-closeness and needle map consistency for shape-from-shading. IEEE T-PAMI 21(12), 1250–1267 (1999)CrossRefGoogle Scholar
  16. 16.
    Frankot, R.T., Chellappa, R.: A method for enforcing integrability in shape from shading algorithms. IEEE T-PAMI 10(4), 439–451 (1988)CrossRefzbMATHGoogle Scholar
  17. 17.
    Smith, G.D.J., Bors, A.G.: Height estimation from vector fields of surface normals. In: 14th Int. Conf. on Digital Signal Processing, vol. 2, pp. 1031–1034 (2002)Google Scholar
  18. 18.
    Wildey, R.L.: The Moon’s photometric function. Nature 200(4911), 1056–1058 (1963)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  1. 1.Computer Graphics LabTU BraunschweigBraunschweigGermany

Personalised recommendations