Skip to main content

Making Archetypal Analysis Practical

  • Conference paper

Part of the Lecture Notes in Computer Science book series (LNIP,volume 5748)

Abstract

Archetypal analysis represents the members of a set of multivariate data as a convex combination of extremal points of the data. It allows for dimensionality reduction and clustering and is particularly useful whenever the data are superpositions of basic entities. However, since its computation costs grow quadratically with the number of data points, the original algorithm hardly applies to modern pattern recognition or data mining settings. In this paper, we introduce ways of notably accelerating archetypal analysis. Our experiments are the first successful application of the technique to large scale data analysis problems.

Keywords

  • Convex Hull
  • Convex Combination
  • Natural Image
  • Nonnegative Matrix Factorization
  • Nonnegative Matrix

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Cutler, A., Breiman, L.: Archetypal Analysis. Technometrics 36(4), 338–347 (1994)

    CrossRef  MathSciNet  MATH  Google Scholar 

  2. Jolliffe, I.: Principal Component Analysis. Springer, Heidelberg (1986)

    CrossRef  MATH  Google Scholar 

  3. Schölkopf, B., Smola, A.J., Müller, K.-R.: Nonlinear Component Analysis as a Kernel Eigenvalue Problem. Neural Computation 10(5), 1299–1319 (1998)

    CrossRef  Google Scholar 

  4. Lee, D.D., Seung, S.: Learning the Parts of Objects by Non-Negative Matrix Factorization. Nature 401(6755), 788 (1999)

    CrossRef  Google Scholar 

  5. Finesso, L., Spreij, P.: Approximate Nonnegative Matrix Factorization via Alternating Minimization. In: Proc. 16th Int. Symp. on Mathematical Theory of Networks and Systems, Leuven (July 2004)

    Google Scholar 

  6. Stone, E., Cutler, A.: Archetypal Analysis of Spatio-temporal Dynamics. Physica D 90(3), 209–224 (1996)

    CrossRef  MathSciNet  MATH  Google Scholar 

  7. Chan, B.H.P.: Archetypal Analysis of Galaxy Spectra. Monthly Notices of the Royal Astronomical Society 338(3), 790–795 (2003)

    CrossRef  Google Scholar 

  8. Huggins, P., Pachter, L., Sturmfels, B.: Toward the Human Genotope. Bulletin of Mathematical Biology 69(8), 2723–2735 (2007)

    CrossRef  MathSciNet  MATH  Google Scholar 

  9. Joachims, T.: Making Large-Scale Support Vector Machine Learningn Practical. In: Advances in Kernel Methods: Support Vector Learning, MIT Press, Cambridge (1999)

    Google Scholar 

  10. de Berg, M., van Kreveld, M., Overmars, M., Schwarzkopf, O.: Computational Geometry. Springer, Heidelberg (2000)

    CrossRef  MATH  Google Scholar 

  11. Ziegler, G.M.: Lectures on Polytopes. Springer, Heidelberg (1995)

    CrossRef  MATH  Google Scholar 

  12. Donoho, D.L., Tanner, J.: Neighborliness of Randomly-Projected Simplices in High Dimensions. Proc. of the Nat. Academy of Sciences 102(27), 9452–9457 (2005)

    CrossRef  MathSciNet  MATH  Google Scholar 

  13. Hall, P., Marron, J., Neeman, A.: Geometric representation of high dimension low sample size data. J. of the Royal Statistical Society B 67(3), 427–444 (2005)

    CrossRef  MathSciNet  MATH  Google Scholar 

  14. Blank, M., Gorelick, L., Shechtman, E., Irani, M., Basri, R.: Actions as Space-Time Shapes. In: Proc. ICCV (2005)

    Google Scholar 

  15. Torralba, A., Fergus, R., Freeman, W.T.: 80 Million Tiny Images: A Large Dataset for Non-parametric Object and Scene Recognition. IEEE Trans. on Pattern Analalysis and Machine Intelligence 30(11), 1958–1970 (2008)

    CrossRef  Google Scholar 

  16. Heidemann, G.: The principal components of natural images revisited. IEEE Trans. on Pattern Analalysis and Machine Intelligence 28(5), 822–826 (2006)

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bauckhage, C., Thurau, C. (2009). Making Archetypal Analysis Practical. In: Denzler, J., Notni, G., Süße, H. (eds) Pattern Recognition. DAGM 2009. Lecture Notes in Computer Science, vol 5748. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-03798-6_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-03798-6_28

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-03797-9

  • Online ISBN: 978-3-642-03798-6

  • eBook Packages: Computer ScienceComputer Science (R0)