Skip to main content

Sparse Bayesian Regression for Grouped Variables in Generalized Linear Models

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 5748))

Abstract

A fully Bayesian framework for sparse regression in generalized linear models is introduced. Assuming that a natural group structure exists on the domain of predictor variables, sparsity conditions are applied to these variable groups in order to be able to explain the observations with simple and interpretable models. We introduce a general family of distributions which imposes a flexible amount of sparsity on variable groups. This model overcomes the problems associated with insufficient sparsity of traditional selection methods in high-dimensional spaces. The fully Bayesian inference mechanism allows us to quantify the uncertainty in the regression coefficient estimates. The general nature of the framework makes it applicable to a wide variety of generalized linear models with minimal modifications.An efficient MCMC algorithm is presented to sample from the posterior. Simulated experiments validate the strength of this new class of sparse regression models. When applied to the problem of splice site prediction on DNA sequence data, the method identifies key interaction terms of sequence positions which help in identifying “true” splice sites.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Tibshirani, R.: Regression shrinkage and selection via the Lasso. J. Roy. Stat. Soc. B 58(1), 267–288 (1996)

    MathSciNet  MATH  Google Scholar 

  2. Figueiredo, M., Jain, A.: Bayesian learning of sparse classifiers. In: Proc. IEEE Comp. Soc. Conf. Computer Vision and Pattern Recognition, vol. 1, pp. 35–41 (2001)

    Google Scholar 

  3. Park, T., Casella, G.: The Bayesian Lasso. Journal of the American Statistical Association 103, 681–686 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  4. Meinshausen, N.: Relaxed lasso. Computational Statistics & Data Analysis 52(1), 374–393 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  5. Caron, F., Doucet, A.: Sparse bayesian nonparametric regression. In: ICML 2008, pp. 88–95. ACM Press, New York (2008)

    Google Scholar 

  6. Yuan, M., Lin, Y.: Model selection and estimation in regression with grouped variables. J. Roy. Stat. Soc. B, 49–67 (2006)

    Google Scholar 

  7. Meier, L., van de Geer, S., Bühlmann, P.: The Group Lasso for Logistic Regression. J. Roy. Stat. Soc. B 70(1), 53–71 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  8. Roth, V., Fischer, B.: The Group-Lasso for generalized linear models: uniqueness of solutions and efficient algorithms. In: ICML 2008, pp. 848–855. ACM, New York (2008)

    Google Scholar 

  9. McCullaghand, P., Nelder, J.A.: Generalized Linear Models. Chapman and Hall, Boca Raton (1983)

    Book  Google Scholar 

  10. Gelman, A., Carlin, J.B., Stern, H.S., Rubin, D.B.: Bayesian Data Analysis. Chapman and Hall, Boca Raton (1995)

    MATH  Google Scholar 

  11. Fink, D.: A compendium of conjugate priors. in progress report: Extension and enhancement of methods for setting data quality objectives. Technical Report (1995)

    Google Scholar 

  12. Everitt, B.S.: The Analysis of Contingency Tables. Chapman and Hall, Boca Raton (1997)

    MATH  Google Scholar 

  13. Green, P.E., Park, T.: Bayesian methods for contingency tables using Gibbs sampling. Statistical Papers 45(1), 33–50 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  14. Raftery, A.E., Lewis, S.M.: One long run with diagnostics: Implementation strategies for Markov chain Monte Carlo. Statistical Science 7, 493–497 (1992)

    Article  Google Scholar 

  15. Yeo, G., Burge, C.B.: Maximum entropy modeling of short sequence motifs with applications to RNA splicing signals. J. Comp. Biology 11, 377–394 (2004)

    Article  Google Scholar 

  16. Seshadri, V.: The inverse Gaussian distribution: a case study in exponential families. Clarendon Press, Oxford (1993)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Raman, S., Roth, V. (2009). Sparse Bayesian Regression for Grouped Variables in Generalized Linear Models. In: Denzler, J., Notni, G., Süße, H. (eds) Pattern Recognition. DAGM 2009. Lecture Notes in Computer Science, vol 5748. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-03798-6_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-03798-6_25

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-03797-9

  • Online ISBN: 978-3-642-03798-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics