MPI on a Million Processors

  • Pavan Balaji
  • Darius Buntinas
  • David Goodell
  • William Gropp
  • Sameer Kumar
  • Ewing Lusk
  • Rajeev Thakur
  • Jesper Larsson Träff
Conference paper

DOI: 10.1007/978-3-642-03770-2_9

Part of the Lecture Notes in Computer Science book series (LNCS, volume 5759)
Cite this paper as:
Balaji P. et al. (2009) MPI on a Million Processors. In: Ropo M., Westerholm J., Dongarra J. (eds) Recent Advances in Parallel Virtual Machine and Message Passing Interface. EuroPVM/MPI 2009. Lecture Notes in Computer Science, vol 5759. Springer, Berlin, Heidelberg

Abstract

Petascale machines with close to a million processors will soon be available. Although MPI is the dominant programming model today, some researchers and users wonder (and perhaps even doubt) whether MPI will scale to such large processor counts. In this paper, we examine this issue of how scalable is MPI. We first examine the MPI specification itself and discuss areas with scalability concerns and how they can be overcome. We then investigate issues that an MPI implementation must address to be scalable. We ran some experiments to measure MPI memory consumption at scale on up to 131,072 processes or 80% of the IBM Blue Gene/P system at Argonne National Laboratory. Based on the results, we tuned the MPI implementation to reduce its memory footprint. We also discuss issues in application algorithmic scalability to large process counts and features of MPI that enable the use of other techniques to overcome scalability limitations in applications.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Pavan Balaji
    • 1
  • Darius Buntinas
    • 1
  • David Goodell
    • 1
  • William Gropp
    • 2
  • Sameer Kumar
    • 3
  • Ewing Lusk
    • 1
  • Rajeev Thakur
    • 1
  • Jesper Larsson Träff
    • 4
  1. 1.Argonne National LaboratoryArgonneUSA
  2. 2.University of IllinoisUrbanaUSA
  3. 3.IBM T.J. Watson Research Center, Yorktown HeightsUSA
  4. 4.NEC Laboratories EuropeSankt AugustinGermany

Personalised recommendations