Skip to main content

Plant Species Identification Using Multi-scale Fractal Dimension Applied to Images of Adaxial Surface Epidermis

  • Conference paper

Part of the Lecture Notes in Computer Science book series (LNIP,volume 5702)

Abstract

This paper presents the study of computational methods applied to histological texture analysis in order to identify plant species, a very difficult task due to the great similarity among some species and presence of irregularities in a given species. Experiments were performed considering 300 ×300 texture windows extracted from adaxial surface epidermis from eight species. Different texture methods were evaluated using Linear Discriminant Analysis (LDA). Results showed that methods based on complexity analysis perform a better texture discrimination, so conducting to a more accurate identification of plant species.

Keywords

  • plant identification
  • complexity
  • multi-scale fractal dimension
  • texture analysis

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-642-03767-2_83
  • Chapter length: 9 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   199.00
Price excludes VAT (USA)
  • ISBN: 978-3-642-03767-2
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   259.00
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Metcalfe, C.R., Chalk, L.: Anatomy of dicotyledons, 2nd edn. Oxford University Press, Oxford (1979)

    Google Scholar 

  2. Stace, C.A.: Plant taxonomy and biosystematics, 2nd edn. Cambridge University Press, Cambridge (1989)

    Google Scholar 

  3. Robinson, H.: A monograph on foliar anatomy of the genera connelia, cottendorfia and navia (bromeliaceae). Smithsonian Contributions of Botany 2, 1–41 (1969)

    Google Scholar 

  4. Haralick, R.M.: Statistical and structural approaches to texture. Proc. IEEE 67(5), 786–804 (1979)

    CrossRef  Google Scholar 

  5. Bala, J.W.: Combining structural and statistical features in a machine learning technique for texture classification. In: IEA/AIE, vol. 1, pp. 175–183 (1990)

    Google Scholar 

  6. Chambolle, A.: Image segmentation by variational methods: Mumford and Shah functional and the discrete approximations. SIAM J. Appl. Math. 55(3), 827–863 (1995)

    MATH  CrossRef  MathSciNet  Google Scholar 

  7. Backes, A.R., Bruno, O.M.: A new approach to estimate fractal dimension of texture images. In: Elmoataz, A., Lezoray, O., Nouboud, F., Mammass, D. (eds.) ICISP 2008. LNCS, vol. 5099, pp. 136–143. Springer, Heidelberg (2008)

    CrossRef  Google Scholar 

  8. da, L., Costa, F., Cesar Jr., R.M.: Shape Analysis and Classification: Theory and Practice. CRC Press, Boca Raton (2000)

    Google Scholar 

  9. Tricot, C.: Curves and Fractal Dimension. Springer, Heidelberg (1995)

    MATH  Google Scholar 

  10. Gonzalez, R.C., Woods, R.E.: Digital Image Processing, 2nd edn. Prentice-Hall, New Jersey (2002)

    Google Scholar 

  11. de, O., Plotze, R., Falvo, M., Pádua, J.G., Bernacci, L.C., Vieira, M.L.C., Oliveira, G.C.X., Bruno, O.M.: Leaf shape analysis using the multiscale minkowski fractal dimension, a new morphometric method: a study with passiflora (passifloraceae). Canadian Journal of Botany 83(3), 287–301 (2005)

    CrossRef  Google Scholar 

  12. Smith, G.D.: Numerical Solution of Partial Differential Equations: Finite Difference Methods, 3rd edn. Oxford (1986)

    Google Scholar 

  13. Everitt, B.S., Dunn, G.: Applied Multivariate Analysis, 2nd edn. Arnold (2001)

    Google Scholar 

  14. Fukunaga, K.: Introduction to Statistical Pattern Recognition, 2nd edn. Academic Press, London (1990)

    MATH  Google Scholar 

  15. Azencott, R., Wang, J.P., Younes, L.: Texture classification using windowed fourier filters. IEEE Trans. Pattern Anal. Mach. Intell. 19(2), 148–153 (1997)

    CrossRef  Google Scholar 

  16. Sengür, A., Türkoglu, I., Ince, M.C.: Wavelet packet neural networks for texture classification. Expert Syst. Appl. 32(2), 527–533 (2007)

    CrossRef  Google Scholar 

  17. Huang, P.W., Dai, S.K., Lin, P.L.: Texture image retrieval and image segmentation using composite sub-band gradient vectors. J. Visual Communication and Image Representation 17(5), 947–957 (2006)

    CrossRef  Google Scholar 

  18. Jain, A.K., Farrokhnia, F.: Unsupervised texture segmentation using Gabor filters. Pattern Recognition 24(12), 1167–1186 (1991)

    CrossRef  Google Scholar 

  19. Idrissa, M., Acheroy, M.: Texture classification using gabor filters. Pattern Recognition Letters 23(9), 1095–1102 (2002)

    MATH  CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Backes, A.R., de M. Sá Junior, J.J., Kolb, R.M., Bruno, O.M. (2009). Plant Species Identification Using Multi-scale Fractal Dimension Applied to Images of Adaxial Surface Epidermis. In: Jiang, X., Petkov, N. (eds) Computer Analysis of Images and Patterns. CAIP 2009. Lecture Notes in Computer Science, vol 5702. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-03767-2_83

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-03767-2_83

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-03766-5

  • Online ISBN: 978-3-642-03767-2

  • eBook Packages: Computer ScienceComputer Science (R0)