Skip to main content

A Hypergraph-Based Model for Graph Clustering: Application to Image Indexing

  • Conference paper
Computer Analysis of Images and Patterns (CAIP 2009)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 5702))

Included in the following conference series:

Abstract

In this paper, we introduce a prototype-based clustering algorithm dealing with graphs. We propose a hypergraph-based model for graph data sets by allowing clusters overlapping. More precisely, in this representation one graph can be assigned to more than one cluster. Using the concept of the graph median and a given threshold, the proposed algorithm detects automatically the number of classes in the graph database. We consider clusters as hyperedges in our hypergraph model and we define a retrieval technique indexing the database with hyperedge centroids. This model is interesting to travel the data set and efficient to cluster and retrieve graphs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agarwal, S., Lim, J., Zelnik-Manor, L., Perona, P., Kriegman, D.J., Belongie, S.: Beyond pairwise clustering. In: IEEE CVPR, pp. 838–845 (2005)

    Google Scholar 

  2. Babu, T.R., Murty, M.N.: Comparaison of genetic algorithm based prototype selection schemes. Pattern Recognition 34, 523–525 (2001)

    Article  Google Scholar 

  3. Berge, C.: Graphes et Hypergraphes. Paris Dunod (1970)

    Google Scholar 

  4. Bezdek, J.C., Pal, M.R., Keller, J., Krisnapuram, R.: Fuzzy Models and Algorithms for Pattern Recognition and Image Processing. Kluwer Academic Publishers, Norwell (1999)

    MATH  Google Scholar 

  5. Bunke, H., Dickinson, P.J., Kraetzl, M., Neuhaus, M., Stettler, M.: Matching of hypergraphs - algorithms, applications, and experiments. In: Bunke, H., Kandel, A., Last, M. (eds.) Applied Pattern Recognition. Studies in Computational Intelligence, vol. 91, pp. 131–154. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  6. Bunke, H., Foggia, P., Guidobaldi, C., Vento, M.: Graph clustering using the weighted minimum common supergraph. In: Hancock, E.R., Vento, M. (eds.) GbRPR 2003. LNCS, vol. 2726, pp. 235–246. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  7. Dosch, P., Valveny, E.: Report on the second symbol recognition contest. In: Liu, W., Lladós, J. (eds.) GREC 2005. LNCS, vol. 3926, pp. 381–397. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  8. Felzenszwalb, P.F., Huttenlocher, D.P.: Efficient graph-based image segmentation. International Journal of Computer Vision 59(2), 167–181 (2004)

    Article  Google Scholar 

  9. Harris, C., Stephens, M.: A combined corner and edge detection. In: Proceedings of The Fourth Alvey Vision Conference, pp. 147–151 (1988)

    Google Scholar 

  10. Hlaoui, A., Wang, S.: A graph clustering algorithm with applications to content-based image retrieval. In: ICMLC 2003, vol. 3, pp. 1855–1861 (2003)

    Google Scholar 

  11. Jiang, X., Munger, A., Bunke, H.: On median graphs:properties, algorithms, and applications. IEEE TPAMI 23(10), 1144–1151 (2001)

    Google Scholar 

  12. Jouili, S., Tabbone, S.: Graph matching using node signatures. In: IAPR Workshop on GbRPR. LNCS, vol. 5534, pp. 154–163. Springer, Heidelberg (2009)

    Google Scholar 

  13. Luo, B., Wilson, R.C., Hancock, E.R.: Spectral feature vectors for graph clustering. In: Caelli, T.M., Amin, A., Duin, R.P.W., Kamel, M.S., de Ridder, D. (eds.) SPR 2002 and SSPR 2002. LNCS, vol. 2396, pp. 83–93. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  14. Nene, S., Nayar, S., Murase, H.: Columbia object image library (coil-100). Technical report, Columbia Univ. (1996)

    Google Scholar 

  15. Ren, P., Wilson, R.C., Hancock, E.R.: Spectral embedding of feature hypergraphs. In: da Vitoria Lobo, N., Kasparis, T., Roli, F., Kwok, J.T., Georgiopoulos, M., Anagnostopoulos, G.C., Loog, M. (eds.) S+SSPR 2008. LNCS, vol. 5342, pp. 308–317. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  16. Riesen, K., Bunke, H.: IAM graph database repository for graph based pattern recognition and machine learning. In: da Vitoria Lobo, N., Kasparis, T., Roli, F., Kwok, J.T., Georgiopoulos, M., Anagnostopoulos, G.C., Loog, M. (eds.) S+SSPR 2008. LNCS, vol. 5342, pp. 287–297. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  17. Riesen, K., Neuhaus, M., Bunke, H.: Graph embedding in vector spaces by means of prototype selection. In: Escolano, F., Vento, M. (eds.) GbRPR 2007. LNCS, vol. 4538, pp. 383–393. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  18. Robles-Kelly, A., Hancock, E.R.: Graph edit distance from spectral seriation. IEEE TPAMI 27(3), 365–378 (2005)

    Google Scholar 

  19. Sebastian, T.B., Klein, P.N., Kimia, B.B.: Shock-based indexing into large shape databases. In: Heyden, A., Sparr, G., Nielsen, M., Johansen, P. (eds.) ECCV 2002. LNCS, vol. 2352, pp. 731–746. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  20. Sengupta, K., Boyer, K.: Organizing large structural modelbases. IEEE TPAMI 17(4), 321–332 (1995)

    Google Scholar 

  21. Shapiro, L.G., Haralick, R.M.: Organization of relational models for scene analysis. IEEE TPAMI PAMI-4(6), 595–602 (1982)

    Google Scholar 

  22. Shokoufandeh, A., Dickinson, S.J.: A unified framework for indexing and matching hierarchical shape structures. In: Arcelli, C., Cordella, L.P., Sanniti di Baja, G. (eds.) IWVF 2001. LNCS, vol. 2059, pp. 67–84. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  23. Spath, H.: Cluster analysis algorithms for data reduction and classification of objects. Ellis Horwood Limited, West Sussex (1980)

    Google Scholar 

  24. Torsello, A., Bulò, S.R., Pelillo, M.: Beyond partitions: Allowing overlapping groups in pairwise clustering. In: ICPR, pp. 1–4. IEEE, Los Alamitos (2008)

    Google Scholar 

  25. Ward, J.H.: Hierarchical grouping to optimize an objective function. Journal of the American Statistical Association 58(301), 236–244 (1963)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Jouili, S., Tabbone, S. (2009). A Hypergraph-Based Model for Graph Clustering: Application to Image Indexing. In: Jiang, X., Petkov, N. (eds) Computer Analysis of Images and Patterns. CAIP 2009. Lecture Notes in Computer Science, vol 5702. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-03767-2_44

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-03767-2_44

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-03766-5

  • Online ISBN: 978-3-642-03767-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics