Skip to main content

A Model for Saliency Detection Using NMFsc Algorithm

  • Conference paper
Book cover Computer Analysis of Images and Patterns (CAIP 2009)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 5702))

Included in the following conference series:

Abstract

Saliency mechanism has been considered crucial in the human visual system and helpful to object detection and recognition. This paper addresses an information theoretic model for visual saliency detection. It consists of two steps: first, using the Non-negative Matrix Factorization with sparseness constraints (NMFsc) algorithm to learn the basis functions from a set of randomly sampled natural image patches; and then, applying information theoretic principle to generate the saliency map by the Salient Information (SI) which is calculated from the coefficients represented by basis functions. We compare our model with the previous methods on natural images. Experimental results show that our model performs better than existing approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Fergus, R., Perona, P., Zisserman, A.: Object Class Recognition by Unsupervised Scale-invariant Learning. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition (2003)

    Google Scholar 

  2. Treisman, A., Gelade, G.: A Feature-Integration Theory of Attention. Cognitive Psychology 12(1), 97–136 (1980)

    Article  Google Scholar 

  3. Itti, L., Koch, C., Niebur, E.: A Model of Saliency-Based Visual Attention for Rapid Scene Analysis. TPAMI 20(11), 1254–1259 (1998)

    Google Scholar 

  4. Oliva, A., Torralba, A., Castelhano, M., Henderson, J.: Top-down control of visual attention in object detection. In: IEEE International Conference on Image Processing (2003)

    Google Scholar 

  5. Harel, J., Koch, C., Perona, P.: Graph-Based Visual Saliency. In: Advances in Neural Information Processing Systems (2007)

    Google Scholar 

  6. Bruce, N., Tsotsos, J.: Saliency Based on Information Maximization. In: Advances in Neural Information Processing Systems, vol. 18 (2006)

    Google Scholar 

  7. Hou, X., Zhang, L.: Saliency Detection: A Spectral Residual Approach. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition (2007)

    Google Scholar 

  8. Hoyer, P.: Non-negative matrix factorization with sparseness constraints. Journal of Machine Learning Research 14, 1457–1469 (2004)

    Google Scholar 

  9. Olshausen, B., Field, D.: Natural image statistics and efficient coding. Network: Computation in Neural Systems 14, 333–339 (1996)

    Article  Google Scholar 

  10. Hoyer, P.: Non-negative sparse coding. In: Proc. IEEE Workshop on Neural Networks for Signal Processing, vol. 12, pp. 557–565 (2002)

    Google Scholar 

  11. Engel, S., Zhang, X., Wandell, B.: Colour Tuning in Human Visual Cortex Measured With Functional Magnetic Resonance Imaging. Nature 388(6637), 68–71 (1997)

    Article  Google Scholar 

  12. Hou, X., Zhang, L.: Dynamic Visual Attention: Searching for coding length increments. In: Advances in Neural Information Processing Systems (2008)

    Google Scholar 

  13. Shannon, C.: A mathematical theory of communication. Bell System Technical Journal 27, 93–154 (1948)

    MathSciNet  Google Scholar 

  14. Frey, H.P., König, P., Einhäuser, W.: The Role of First-and Second-Order Stimulus Features for Human Overt Attention. Perception and Psychophysics 69, 153–161 (2007)

    Google Scholar 

  15. Walther, D., Koch, C.: Modeling attention to salient proto-objects. Neural Networks 19, 1395–1407 (2006)

    Article  MATH  Google Scholar 

  16. Tatler, B., Baddeley, R., Gilchrist, I.: Visual correlates of fixation selection: effects of scale and time. Vision Research 14, 643–659 (2005)

    Article  Google Scholar 

  17. van der Linde, I., Rajashekar, U., Bovik, A., Cormack, L.: DOVES: A Database of Visual Eye Movements. Spatial Vision (2008) (in press)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Liu, J., Liu, Y. (2009). A Model for Saliency Detection Using NMFsc Algorithm. In: Jiang, X., Petkov, N. (eds) Computer Analysis of Images and Patterns. CAIP 2009. Lecture Notes in Computer Science, vol 5702. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-03767-2_37

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-03767-2_37

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-03766-5

  • Online ISBN: 978-3-642-03767-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics