Skip to main content

On the Recovery of Depth from a Single Defocused Image

  • Conference paper
Computer Analysis of Images and Patterns (CAIP 2009)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 5702))

Included in the following conference series:

Abstract

In this paper we address the challenging problem of recovering the depth of a scene from a single image using defocus cue. To achieve this, we first present a novel approach to estimate the amount of spatially varying defocus blur at edge locations. We re-blur the input image and show that the gradient magnitude ratio between the input and re-blurred images depends only on the amount of defocus blur. Thus, the blur amount can be obtained from the ratio. A layered depth map is then extracted by propagating the blur amount at edge locations to the entire image. Experimental results on synthetic and real images demonstrate the effectiveness of our method in providing a reliable estimate of the depth of a scene.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Barnard, S., Fischler, M.: Computational stereo. ACM Comput. Surv. 14(4), 553–572 (1982)

    Article  Google Scholar 

  2. Dhond, U., Aggarwal, J.: Structure from stereo: A review. IEEE Trans. Syst. Man Cybern. 19(6), 1489–1510 (1989)

    Article  MathSciNet  Google Scholar 

  3. Dellaert, F., Seitz, S.M., Thorpe, C.E., Thrun, S.: Structure from motion without correspondence. In: Proc. CVPR, pp. 557–564 (2000)

    Google Scholar 

  4. Tomasi, C., Kanade, T.: Shape and motion from image streams under orthography: A factorization method. Int. J. Comput. Vision 9, 137–154 (1992)

    Article  Google Scholar 

  5. Asada, N., Fujiwara, H., Matsuyama, T.: Edge and depth from focus. Int. J. Comput. Vision 26(2), 153–163 (1998)

    Article  Google Scholar 

  6. Nayar, S., Nakagawa, Y.: Shape from focus. IEEE Trans. Pattern Anal. Mach. Intell. 16(8), 824–831 (1994)

    Article  Google Scholar 

  7. Favaro, P., Favaro, P., Soatto, S.: A geometric approach to shape from defocus. IEEE Trans. Pattern Anal. Mach. Intell. 27(3), 406–417 (2005)

    Article  Google Scholar 

  8. Pentland, A.P.: A new sense for depth of field. IEEE Trans. Pattern Anal. Mach. Intell. 9(4), 523–531 (1987)

    Article  Google Scholar 

  9. Moreno-Noguer, F., Belhumeur, P.N., Nayar, S.K.: Active refocusing of images and videos. ACM Trans. Graphics, 67 (2007)

    Google Scholar 

  10. Nayar, S.K., Watanabe, M., Noguchi, M.: Real-time focus range sensor. IEEE Trans. Pattern Anal. Mach. Intell. 18(12), 1186–1198 (1996)

    Article  Google Scholar 

  11. Levin, A., Fergus, R., Durand, F., Freeman, W.T.: Image and depth from a conventional camera with a coded aperture. ACM Trans. Graphics (2007)

    Google Scholar 

  12. Saxena, A., Sun, M., Ng, A.: Make3d: Learning 3d scene structure from a single still image. IEEE Trans. Pattern Anal. Mach. Intell., 1–1 (2008)

    Google Scholar 

  13. Namboodiri, V.P., Chaudhuri, S.: Recovery of relative depth from a single observation using an uncalibrated (real-aperture) camera. In: Proc. CVPR (2008)

    Google Scholar 

  14. Hecht, E.: Optics, 4th edn. Addison-Wesley, Reading (2001)

    Google Scholar 

  15. Komodakis, N., Tziritas, G., Paragios, N.: Performance vs computational efficiency for optimizing single and dynamic mrfs: Setting the state of the art with primal-dual strategies. Proc. CVIU 112(1), 14–29 (2008)

    Google Scholar 

  16. Canny, J.: A computational approach to edge detection. IEEE Trans. Pattern Anal. Mach. Intell. 8(6), 679–698 (1986)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Zhuo, S., Sim, T. (2009). On the Recovery of Depth from a Single Defocused Image. In: Jiang, X., Petkov, N. (eds) Computer Analysis of Images and Patterns. CAIP 2009. Lecture Notes in Computer Science, vol 5702. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-03767-2_108

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-03767-2_108

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-03766-5

  • Online ISBN: 978-3-642-03767-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics