Skip to main content

Computing Naturally in the Billiard Ball Model

  • Conference paper
Unconventional Computation (UC 2009)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5715))

Included in the following conference series:

  • 742 Accesses

Abstract

Fredkin’s Billiard Ball Model (BBM) is considered one of the fundamental models of collision-based computing, and it is essentially based on elastic collisions of mobile billiard balls. Moreover, fixed mirrors or reflectors are brought into the model to deflect balls to complete the computation. However, the use of fixed mirrors is “physically unrealistic” and makes the BBM not perfectly momentum conserving from a physical point of view, and it imposes an external architecture onto the computing substrate which is not consistent with the concept of “architectureless” in collision-based computing. In our initial attempt to reduce mirrors in the BBM, we present a class of gates: the m-counting gate, and show that certain circuits can be realized with few mirrors using this gate. We envisage that our findings can be useful in future research of collision-based computing in novel chemical and optical computing substrates.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adamatzky, A.: Controllable transmission of information in the excitable media: the 2 +  medium. Adv. Mater. Opt. Electron. 5, 145–155 (1995)

    Article  Google Scholar 

  2. Adamatzky, A. (ed.): Collision-Based Computing. Springer, London (2002)

    MATH  Google Scholar 

  3. Adamatzky, A.: Collision-based computing in Belousov–Zhabotinsky medium. Chaos, Solitons & Fractals 21(5), 1259–1264 (2004)

    Article  MATH  Google Scholar 

  4. Adamatzky, A., de Lacy Costello, B.: Binary collisions between wave-fragments in a sub-excitable Belousov–Zhabotinsky medium Chaos. Solitons & Fractals 34(2), 307–315 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  5. Berlekamp, E.R., Conway, J.H., Guy, R.K.: Winning Ways for Your Mathematical Plays. Games in particular, vol. 2. Academic Press, London (1982)

    MATH  Google Scholar 

  6. Christodoulides, D.N., Lederer, F., Silberberg, Y.: Discretizing light behaviour in linear and nonlinear waveguide lattices. Nature 424, 817–823 (2003)

    Article  Google Scholar 

  7. Dadda, L.: Some Schemes for Parallel Multipliers. Alta Frequenza 34, 349–356 (1965)

    Google Scholar 

  8. de Lacy Costello, B., Adamatzky, A.: Experimental implementation of collision-based gates in Belousov–Zhabotinsky medium Chaos. Solitons & Fractals 25(3), 535–544 (2005)

    Article  MATH  Google Scholar 

  9. Fredkin, E., Toffoli, T.: Conservative logic. Int. J. Theor. Phys. 21(3-4), 219–253 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  10. Margolus, N.: Physics-like models of computation. Physica D 10(1-2), 81–95 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  11. Margolus, N.: Universal cellular automata based on the collisions of soft spheres. In: Adamatzky, A. (ed.) Collision-Based Computing, pp. 107–134. Springer, London (2002)

    Chapter  Google Scholar 

  12. Sendiña-Nadal, I., Mihaliuk, E., Wang, J., Pérez-Muñuzuri, V., Showalter, K.: Wave Propagation in Subexcitable Media with Periodically Modulated Excitability. Phys. Rev. Lett. 86, 1646–1649 (2001)

    Article  Google Scholar 

  13. Swartzlander Jr., E.E.: Parallel Counters. IEEE Trans. Comput. C–22 (11), 1021–1024 (1973)

    Article  MATH  Google Scholar 

  14. Toth, R., Stone, C., Adamatzky, A., de Lacy Costello, B., Bull, L.: Experimental validation of binary collisions between wave fragments in the photosensitive Belousov–Zhabotinsky reaction Chaos. Solitons & Fractals (in press)

    Google Scholar 

  15. Wuensche, A., Adamatzky, A.: On Spiral Glider–Guns in Hexagonal Cellular Automata: Activator–Inhibitor Paradigm. Int. J. Modern Phys. C 17(7), 1009–1025 (2006)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Zhang, L. (2009). Computing Naturally in the Billiard Ball Model. In: Calude, C.S., Costa, J.F., Dershowitz, N., Freire, E., Rozenberg, G. (eds) Unconventional Computation. UC 2009. Lecture Notes in Computer Science, vol 5715. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-03745-0_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-03745-0_29

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-03744-3

  • Online ISBN: 978-3-642-03745-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics