Skip to main content

A Duality Theorem for Real C * Algebras

  • Conference paper
Algebra and Coalgebra in Computer Science (CALCO 2009)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5728))

Included in the following conference series:

Abstract

The full subcategory of proximity lattices equipped with some additional structure (a certain form of negation) is equivalent to the category of compact Hausdorff spaces. Using the Stone-Gelfand-Naimark duality, we know that the category of proximity lattices with negation is dually equivalent to the category of real C * algebras. The aim of this paper is to give a new proof for this duality, avoiding the construction of spaces. We prove that the category of C * algebras is equivalent to the category of skew frames with negation, which appears in the work of Moshier and Jung on the bitopological nature of Stone duality.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Abramsky, S.: Domain theory in logical form. Ann. Pure Appl. Logic 51 (1991)

    Google Scholar 

  2. Banaschewski, B., Mulvey, C.J.: A globalisation of the Gelfand duality theorem. Ann. Pure Appl. Logic 137(1-3), 62–103 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  3. Coquand, T., Spitters, B.: Constructive Gelfand duality for C*-algebras. In: Mathematical Proceedings of the Cambridge Philosophical Society. Cambridge University Press, Cambridge (2009)

    Google Scholar 

  4. Desharnais, J., Gupta, V., Jagadeesan, R., Panangaden, P.: Approximating labelled Markov processes. Inf. Comput. 184(1), 160–200 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  5. Johnstone, P.: Stone Spaces. Cambridge University Press, Cambridge (1982)

    MATH  Google Scholar 

  6. Jung, A., Moshier, M.A.: On the bitopological nature of Stone duality. Technical Report CSR-06-13, School of Computer Science, University of Birmingham (2006)

    Google Scholar 

  7. Jung, A., Sünderhauf, P.: On the duality of compact vs. open. In: Andima, S., Flagg, R.C., Itzkowitz, G., Misra, P., Kong, Y., Kopperman, R. (eds.) Papers on General Topology and Applications: Eleventh Summer Conference at the University of Southern Maine. Annals of the New York Academy of Sciences, vol. 806, pp. 214–230 (1996)

    Google Scholar 

  8. Dexter, K.: Semantics of probabilistic programs. In: SFCS 1979: Proceedings of the 20th Annual Symposium on Foundations of Computer Science (sfcs 1979), Washington, DC, USA, pp. 101–114. IEEE Computer Society Press, Los Alamitos (1979)

    Google Scholar 

  9. Mislove, M.W., Ouaknine, J., Pavlovic, D., Worrell, J.B.: Duality for labelled markov processes. In: Walukiewicz, I. (ed.) FOSSACS 2004. LNCS, vol. 2987, pp. 393–407. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  10. Moshier, M.A.: On the relationship between compact regularity and Gentzen’s cut rule. Theoretical Comput. Sci. 316, 113–136 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  11. Saheb-Djahromi, N.: Cpo’s of measures for nondeterminism. Theor. Comput. Sci. 12, 19–37 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  12. Smyth, M.: Power domains and predicate transformers: a topological view. In: Díaz, J. (ed.) ICALP 1983. LNCS, vol. 154. Springer, Heidelberg (1983)

    Google Scholar 

  13. Smyth, M.: Topology. In: Handbook of Logic in Computer Science. OUP (1993)

    Google Scholar 

  14. van Breugel, F., Mislove, M.W., Ouaknine, J., Worrell, J.B.: An intrinsic characterization of approximate probabilistic bisimilarity. In: Gordon, A.D. (ed.) FOSSACS 2003. LNCS, vol. 2620, pp. 200–215. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  15. Vickers, S.J.: Topology Via Logic. CUP (1989)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Moshier, M.A., Petrişan, D. (2009). A Duality Theorem for Real C * Algebras. In: Kurz, A., Lenisa, M., Tarlecki, A. (eds) Algebra and Coalgebra in Computer Science. CALCO 2009. Lecture Notes in Computer Science, vol 5728. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-03741-2_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-03741-2_20

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-03740-5

  • Online ISBN: 978-3-642-03741-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics