Abstract
The full subcategory of proximity lattices equipped with some additional structure (a certain form of negation) is equivalent to the category of compact Hausdorff spaces. Using the Stone-Gelfand-Naimark duality, we know that the category of proximity lattices with negation is dually equivalent to the category of real C * algebras. The aim of this paper is to give a new proof for this duality, avoiding the construction of spaces. We prove that the category of C * algebras is equivalent to the category of skew frames with negation, which appears in the work of Moshier and Jung on the bitopological nature of Stone duality.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Abramsky, S.: Domain theory in logical form. Ann. Pure Appl. Logic 51 (1991)
Banaschewski, B., Mulvey, C.J.: A globalisation of the Gelfand duality theorem. Ann. Pure Appl. Logic 137(1-3), 62–103 (2006)
Coquand, T., Spitters, B.: Constructive Gelfand duality for C*-algebras. In: Mathematical Proceedings of the Cambridge Philosophical Society. Cambridge University Press, Cambridge (2009)
Desharnais, J., Gupta, V., Jagadeesan, R., Panangaden, P.: Approximating labelled Markov processes. Inf. Comput. 184(1), 160–200 (2003)
Johnstone, P.: Stone Spaces. Cambridge University Press, Cambridge (1982)
Jung, A., Moshier, M.A.: On the bitopological nature of Stone duality. Technical Report CSR-06-13, School of Computer Science, University of Birmingham (2006)
Jung, A., Sünderhauf, P.: On the duality of compact vs. open. In: Andima, S., Flagg, R.C., Itzkowitz, G., Misra, P., Kong, Y., Kopperman, R. (eds.) Papers on General Topology and Applications: Eleventh Summer Conference at the University of Southern Maine. Annals of the New York Academy of Sciences, vol. 806, pp. 214–230 (1996)
Dexter, K.: Semantics of probabilistic programs. In: SFCS 1979: Proceedings of the 20th Annual Symposium on Foundations of Computer Science (sfcs 1979), Washington, DC, USA, pp. 101–114. IEEE Computer Society Press, Los Alamitos (1979)
Mislove, M.W., Ouaknine, J., Pavlovic, D., Worrell, J.B.: Duality for labelled markov processes. In: Walukiewicz, I. (ed.) FOSSACS 2004. LNCS, vol. 2987, pp. 393–407. Springer, Heidelberg (2004)
Moshier, M.A.: On the relationship between compact regularity and Gentzen’s cut rule. Theoretical Comput. Sci. 316, 113–136 (2004)
Saheb-Djahromi, N.: Cpo’s of measures for nondeterminism. Theor. Comput. Sci. 12, 19–37 (1980)
Smyth, M.: Power domains and predicate transformers: a topological view. In: Díaz, J. (ed.) ICALP 1983. LNCS, vol. 154. Springer, Heidelberg (1983)
Smyth, M.: Topology. In: Handbook of Logic in Computer Science. OUP (1993)
van Breugel, F., Mislove, M.W., Ouaknine, J., Worrell, J.B.: An intrinsic characterization of approximate probabilistic bisimilarity. In: Gordon, A.D. (ed.) FOSSACS 2003. LNCS, vol. 2620, pp. 200–215. Springer, Heidelberg (2003)
Vickers, S.J.: Topology Via Logic. CUP (1989)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2009 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Moshier, M.A., Petrişan, D. (2009). A Duality Theorem for Real C * Algebras. In: Kurz, A., Lenisa, M., Tarlecki, A. (eds) Algebra and Coalgebra in Computer Science. CALCO 2009. Lecture Notes in Computer Science, vol 5728. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-03741-2_20
Download citation
DOI: https://doi.org/10.1007/978-3-642-03741-2_20
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-03740-5
Online ISBN: 978-3-642-03741-2
eBook Packages: Computer ScienceComputer Science (R0)