Abstract

Parameterised monads have the same relationship to adjunctions with parameters as monads do to adjunctions. In this paper, we investigate algebras for parameterised monads. We identify the Eilenberg-Moore category of algebras for parameterised monads and prove a generalisation of Beck’s theorem characterising this category. We demonstrate an application of this theory to the semantics of type and effect systems.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Atkey, R.: Parameterised notions of computation. Journal of Functional Programming 19 (2009)Google Scholar
  2. 2.
    Beck, J.M.: Triples, algebras and cohomology. Reprints in Theory and Applications of Categories 2, 1–59 (2003)MathSciNetMATHGoogle Scholar
  3. 3.
    Benton, N., Kennedy, A., Hofmann, M., Beringer, L.: Reading, writing and relations. In: Kobayashi, N. (ed.) APLAS 2006. LNCS, vol. 4279, pp. 114–130. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  4. 4.
    Gifford, D.K., Lucassen, J.M.: Integrating functional and imperative programming. In: ACM Conference on LISP and Functional Programming (1986)Google Scholar
  5. 5.
    Katsumata, S.-y.: A Semantic Formulation of ⊤ ⊤-Lifting and Logical Predicates for Computational Metalanguage. In: Ong, L. (ed.) CSL 2005. LNCS, vol. 3634, pp. 87–102. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  6. 6.
    Levy, P.B., Power, J., Thielecke, H.: Modelling environments in call-by-value programming languages. Inf. and Comp. 185, 182–210 (2003)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Mac Lane, S.: Categories for the Working Mathematician, 2nd edn. Graduate Texts in Mathematics, vol. 5. Springer, Heidelberg (1998)MATHGoogle Scholar
  8. 8.
    Moggi, E.: Notions of computation and monads. Information and Computation 93(1), 55–92 (1991)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Plotkin, G., Power, J.: Notions of computation determine monads. In: Nielsen, M., Engberg, U. (eds.) FOSSACS 2002. LNCS, vol. 2303, pp. 342–356. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  10. 10.
    Robinson, E.: Variations on algebra: Monadicity and generalisations of equational theories. Formal Asp. Comput. 13(3–5), 308–326 (2002)CrossRefMATHGoogle Scholar
  11. 11.
    Skalka, C., Smith, S.: History Effects and Verification. In: Chin, W.-N. (ed.) APLAS 2004. LNCS, vol. 3302, pp. 107–128. Springer, Heidelberg (2004)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Robert Atkey
    • 1
  1. 1.LFCS, School of InformaticsUniversity of EdinburghUK

Personalised recommendations