Skip to main content

Expected Total Cost Minimum Design of Plane Frames by Means of Stochastic Linear Programming Methods

  • Chapter
  • First Online:
Coping with Uncertainty

Part of the book series: Lecture Notes in Economics and Mathematical Systems ((LNE,volume 633))

Abstract

Yield stresses, allowable stresses, moment capacities (plastic moments with respect to compression, tension and rotation), applied loadings, cost factors, manufacturing errors, etc., are not given fixed quantities in structural analysis and optimal design problems, but must be modeled as random variables with a certain joint probability distribution. Problems from plastic analysis and optimal plastic design are based on the convex yield (feasibility) criterion and the linear equilibrium equation for the stress (state) vector.

After the formulation of the basic mechanical conditions including the relevant material strength parameters and load components as well as the involved design variables (as, e.g., sizing variables) for plane frames, several approximations are considered: (1) approximation of the convex yield (feasible) domain by means of convex polyhedrons (piecewise linearization of the yield domain); (2) treatment of symmetric and non symmetric yield stresses with respect to compression and tension; (3) approximation of the yield condition by using given reference capacities.

As a result, for the survival of plane frames a certain system of necessary and/or sufficient linear equalities and inequalities is obtained. Evaluating the recourse costs, i.e., the costs for violations of the survival condition by means of piecewise linear convex cost functions, a linear program is derived for the minimization of the total costs including weight-, volume- or more general initial (construction) costs. Appropriate cost factors are given. Considering then the expected total costs from construction as well as from possible structural damages or failures, a stochastic linear optimization problem (SLP) is obtained. Finally, discretization of the probability distribution of the random parameter vector yields a (large scale) linear program (LP) having a special structure. For LP’s of this type numerous, very efficient LP-solvers are available – also for the solution of very large scale problems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Arnbjerg-Nielsen, T.: Rigid-ideal plastic model as a reliability analysis tool for ductil structures. Ph.D. Dissertation. Technical University of Denmark, Lyngby (1991)

    Google Scholar 

  2. Augusti, G., Baratta, A., Casciati, F.: Probabilistic Methods in Structural Engineering. Chapman and Hall, London (1984)

    Book  Google Scholar 

  3. Bullen, P.S.: Handbook of Means and Their Inequalities. Kluwer, Dordrecht (2003)

    Book  Google Scholar 

  4. Charmpis, D.C., Schuëller, G.I.: Using Monte Carlo simulation to treat physical uncertainties in structural reliability. In: Marti, K., et al. (ed.) Coping with Uncertainties. LNEMS, vol. 581, pp. 67–83. Springer, Berlin, Heidelberg, New York (2006)

    Google Scholar 

  5. Charnes, A., Lemke, C.E., Zienkiewicz, O.C.: Virtual work, linear programming and plastic limit analysis. Proc. R. Soc. A 25, 110–116 (1959)

    Article  Google Scholar 

  6. Cocchetti, G., Maier, G.: Static shakedown theorems in piecewise linearized plasticity. Arch. Appl. Mech. 68, 651–661 (1988)

    Article  Google Scholar 

  7. Corradi, L., Zavelani, A.: A linear programming approach to shakedown analysis of structures. Comput. Methods Appl. Mech. Eng. 3, 37–53 (1974)

    Article  Google Scholar 

  8. Damkilde, L., Krenk, S.: Limits – a system for limit state analysis and optimal material layout. Comput. Struct. 64(1–4), 709–718 (1997)

    Article  Google Scholar 

  9. Ditlevsen, O., Madsen, H.O.: Structural Reliabilitx Methods. Wiley, New York (1996)

    Google Scholar 

  10. Doltsinis, I.: Elements of Plasticity. WIT, Southhampton (1999)

    Google Scholar 

  11. Frangopol, D.M.: Reliability-based optimum structural design. In: Sundarajan, C. (ed) Probabilistic Structural Mechanics Handbook, pp. 352–387. Chapman and Hall, New York (1995)

    Chapter  Google Scholar 

  12. Gasser, M., Schuëller, G.I.: Some basic principles in reliability-based optimisation (RBO) of structures and mechanical components. In: Marti, K., Kall, P. (eds.) Stochastic Programming Methods and Technical Applications. Lecture Notes in Economics and Mathematical Systems, vol. 458, pp. 80–103. Springer, Berlin (1998)

    Chapter  Google Scholar 

  13. Haftka, R.T., Gürdal, Z., Kamat, M.P.: Elements of structural optimization. Kluwer, Dordrecht (1990)

    Book  Google Scholar 

  14. Han, H., Reddy, B.D.: Plasticity – Mathematical Theory and Numerical Analysis. Springer, New York (1999)

    Google Scholar 

  15. Hardy, G.H., Littlewood, J.E., Pólya, G.: Inequalities. Cambridge University Press, London (1973)

    Google Scholar 

  16. Heitzer, M.: Traglast- und Einspielanalyse zur Bewertung der Sicherheit passiver Komponenten. Dissertation RWTH Aachen (1999)

    Google Scholar 

  17. Hodge, P.G.: Plastic Analysis of Structures. McGraw-Hill, New York (1959)

    Google Scholar 

  18. Kaliszky, S.: Plastizitätslehre. VDI, Düsseldorf (1984)

    Google Scholar 

  19. Kaliszky, S.: Plasticity: Theory and Engineering Applications. Elsevier, Amsterdam (1989)

    Google Scholar 

  20. Kall, P.: Stochastic Linear Programming. Springer, Berlin, Heidelberg, New York (1976)

    Book  Google Scholar 

  21. Kemenjarzh, J.A.: Limit Analysis of Solids and Structures. CRC, Boca Raton (1996)

    Google Scholar 

  22. Kirsch, U.: Structural Optimization. Springer, Berlin, Heidelberg, New York (1993)

    Book  Google Scholar 

  23. König, J.A.: Shakedown of Elastic-Plastic Structures. Elsevier, Amsterdam (1987)

    Google Scholar 

  24. Lawo, M.: Optimierung im konstruktiven Ingenieurbau. Vieweg, Braunschweig (1987)

    Google Scholar 

  25. Lawo, M., Thierauf, G.: Stabtragwerke, Matrizenmethoden der Statik und Dynamik. Teil I: Statik. F. Vieweg, Braunschweig (1980)

    Google Scholar 

  26. Madsen, H.O., Krenk, S., Lind, N.C.: Methods of Structural Safety. Dover, Mineola, NY (1986, 2006)

    Google Scholar 

  27. Marti, K.: Stochastic optimization methods in structural mechanics. ZAMM 70, 742–T745 (1990)

    Google Scholar 

  28. Marti, K.: Approximation and derivatives of probabilities of survival in structural analysis and design. Struct. Optim. 13, 230–243 (1997)

    Article  Google Scholar 

  29. Marti, K.: Stochastic optimization methods in optimal engineering design under stochastic uncertainty. ZAMM 83(11), 1–18 (2003)

    Google Scholar 

  30. Marti, K.: Reliability Analysis of Technical Systems / Structures by means of Polyhedral Approximation of the Safe / Unsafe Domain. GAMM Mitteilungen 30(2), 211–254 (2007)

    Article  Google Scholar 

  31. Marti, K.: Stochastic Optimization Methods, 2nd edn. Springer, Berlin, Heidelberg, New York (2008)

    Book  Google Scholar 

  32. Neal, B.G.: The Plastic Methods of Structural Analysis. Chapman and Hall, London (1965)

    Google Scholar 

  33. Nielsen, M.P.: Limit Analysis and Concrete Plasticity. Prentice Hall, Englewood Cliffs, NJ (1984)

    Google Scholar 

  34. Prager, W., Shield, R.T.: A general theory of optimal plastic design. J. Appl. Mech. 34(1), 184–186 (1967)

    Article  Google Scholar 

  35. Purek, L.: Probabilistische Beurteilung der Tragsicherheit bestehender Bauten. Dissertation ETH Nr. 11880 (1997)

    Google Scholar 

  36. Smith, D.L. (ed.): Mathematical Programming Methods in Structural Plasticity. CISM Courses and Lectures, vol. 299. Springer, Vienna (1990)

    Google Scholar 

  37. Smith, D.L., Munro, J.: Plastic analysis and synthesis of frames subject to multiple loadings. Eng. Optim. 2, 145–157 (1976)

    Article  Google Scholar 

  38. Spiller, W.R.: Automated Structural Analysis: An Introduction. Pergamon, New York (1972)

    Google Scholar 

  39. Thoma, K.: Stochastische Betrachtung von Modellen für vorgespannte Zugelemente. IBK Bericht Nr. 287, Hochschulverlag AG an der ETH Zürich (2004)

    Google Scholar 

  40. Tin-Loi, F.: On the optimal plastic synthesis of frames. Eng. Optim. 16, 91–108 (1990)

    Article  Google Scholar 

  41. Tin-Loi, F.: Plastic limit analysis of plane frames and grids using GAMS. Comput. Struct. 54, 15–25 (1995)

    Article  Google Scholar 

  42. Zimmermann, J.J., Corotis, R.B., Ellis, J.H.: Stochastic programs for identifying significant collaps models in structural systems. In: Der Kiureghian, A., Thoft-Christensen, P. (eds.) Reliability and optimization of structural systems 1990, pp. 359–365. Springer, Berlin, Heidelberg, New York (1991)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kurt Marti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Marti, K. (2010). Expected Total Cost Minimum Design of Plane Frames by Means of Stochastic Linear Programming Methods. In: Marti, K., Ermoliev, Y., Makowski, M. (eds) Coping with Uncertainty. Lecture Notes in Economics and Mathematical Systems, vol 633. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-03735-1_8

Download citation

Publish with us

Policies and ethics