Skip to main content

Lifespan, Birth Defects, and Experimental Cancer

  • Chapter
  • 710 Accesses

The Radiation Effects Research Foundation (RERF), which is a cooperative Japan—U.S. study of Japanese A-bomb survivors, has several research functions. Among them are life span, birth defect, and in utero studies (Table 13.1).

Effects of aging can be slowed or prevented by lifestyle changes, nutritional strategies and steady, continuous exercise sufficient to make muscle cells need increased amounts of oxygen. Feeding rodents ad libitum nutritionally rich, high-calorie diets results in poor survival compared with the beneficial effects of simple caloric restriction. The beneficial effects of caloric restriction on lifespan have been documented in invertebrates, rodents, and other vertebrates such as fish, birds, other mammals, and humans. A 30–40% caloric restriction in rodents lowers the incidence and/or delays the onset of most spontaneous tumors, reduces the severity and/or onset of many spontaneous degenerative diseases, and extends average and maximal lifespan [1–4].

Increased ionizing radiation in radiation-deficient environments provides an increased lifespan and abundant health

(TD Luckey)

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Weindruch R, Walford RL (1988) The retardation of aging and disease by dietary restriction. Charles C. Thomas, Springfield, IL

    Google Scholar 

  2. McCay CM, Crowell MF, Maynard LA (1935) The effect of retarded growth upon the length of the life span and upon the ultimate body size. J Nutr 10:63–79

    CAS  Google Scholar 

  3. Yu BP, Masoro J, McMahan CA (1985) Nutritional influences on aging of Fischer-344 rats. 1. Physical, metabolic and longevity characteristics. J Gerontol 40:657–670

    CAS  PubMed  Google Scholar 

  4. Roe FJC (1990) 1200-Rat Biosure study: design and overview of results. In:Fishbein L (ed) Biological effects of dietary restriction, ILSI Monographs. Springer, NY, pp 287–304

    Google Scholar 

  5. Lorenz E, Hollcroft W, Miller E et al (1955) Long-term effects of acute and chronic irradiation of mice. I. Survival and tumor incidence following chronic irradiation of 0.11 r per day. J Natl Cancer Inst 15:1049–1058

    CAS  PubMed  Google Scholar 

  6. Caratero A, Courtade M, Bonnet L et al (1998) Effect of a continuous gamma irradiation at a very low dose on the life span of mice. Gerontology 44:272–276

    Article  CAS  PubMed  Google Scholar 

  7. Duport P (2003) A database of cancer induction by low-dose radiation in mammals: overview and initial observations. Int J Low Radiat 1:120–131

    Article  Google Scholar 

  8. Spalding JF, Thomas RG, Tietjen GI (1982) Life span of C57 mice as influenced by radiation dose, dose rate, and age at exposure. National Laboratory, U.S. Government Printing Office, Los Alamos

    Google Scholar 

  9. Maisin JR, Gerber GB, Vankerdom J, Wambersie A (1996) Survival and idseases in C57BL mice exposed to X rays or 3.1 MeV neutrons at an age of 7 or 21 days. Radiat Res 146:453–460

    Article  CAS  PubMed  Google Scholar 

  10. Carlson LD, Scheyer WJ, Jackson BH (1957) The combined effect of ionizing radiation and low temperature on the metabolism, longevity, and soft tissue of the rat. Radiat Res 7:190–197

    Article  CAS  PubMed  Google Scholar 

  11. Yonezawa M, Misonoh J, Hosokawa Y (1996) Two types of X-ray-induced radioresistance in mice: presence of 4 dose ranges with distinct biological effects. Mutat Res 358:237–243

    PubMed  Google Scholar 

  12. Maisin J, Gerber G, Vankerkom J, Wambersie A (1996) Survival and diseases in C57BL mice exposed to X rays or 3.1 MeV neutrons at an age of 7 or 21days. Radiat Res 146:453–460

    Article  CAS  PubMed  Google Scholar 

  13. Monchaux G, Morlier JP, Morin M et al (1994) Carcinogenic and cocarcinogenic effects of radon and radon daughters in rats. Environ Health Perspect 102:64–73

    CAS  PubMed  Google Scholar 

  14. Brown SO, Krise GM, Pace HB (1963) Continuous low-dose radiation effects on successive litters of the albino rat. Radiat Res 19:270–627

    Article  CAS  PubMed  Google Scholar 

  15. Ina Y, Sakai K (2004) Prolongation of life span associated with immunological modification by chronic low-dose-rate irradiation in MRL-lpr/lpr mice. Radiat Res 161:168–173

    Article  CAS  PubMed  Google Scholar 

  16. Ina Y, Sakai K (2005) Further study of prolongation of life span associated with immunologi-cal modification by chronic low-dose-rate irradiation in MRL-lpr/lpr mice: effects of whole-life irradiation. Radiat Res 163:418–423

    Article  CAS  PubMed  Google Scholar 

  17. Mine M, Okumura Y, Ichimaru M et al (1990) Apparently beneficial effect of low to intermediate doses of A-bomb radiation on human lifespan. Int J Radiat Biol 58:1035–1043

    Article  CAS  PubMed  Google Scholar 

  18. Kondo S (1993) Health effects of low-level radiation. Kinki University Press, Japan

    Google Scholar 

  19. Okumura Y, Mine M (1997) Effects of low doses of A-bomb radiation on human lifespan. Low doses of ionizing radiation: biological effects and regulatory control contributed papers. Seville: IAEA-TECDOC-976, IAEA-CN-67/129, International Atomic Energy Agency, Austria, pp 414–416

    Google Scholar 

  20. Anderson RE, Key CR, Yamamoto T, Thorslund T (1974) Aging in Hiroshima and Nagasaki atomic bomb survivors. Am J Pathol 75:1–12

    CAS  PubMed  Google Scholar 

  21. Cologne J, Preston DL (2000) Longevity of atomic bomb survivors. Lancet 356:303–307

    Article  CAS  PubMed  Google Scholar 

  22. Okajima S, Mine M, Nakamura T (1985) Mortality of registered A-bomb survivors in Nagasaki, Japan, 1970–1984. Radiat Res 103:419–431

    Article  CAS  PubMed  Google Scholar 

  23. Berrington A, Darby SC, Weiss HA, Doll R (2001) 100 years of observation on British radiologists: mortality from cancer and other causes 1897–1997. Br J Radiol 74:507–519

    CAS  PubMed  Google Scholar 

  24. Doody MM, Mandel JS, Lubin JH, Boice JD (1998) Mortality among United States radiologic technologists, 1926–90. Cancer Causes Control 9:67–75

    Article  CAS  PubMed  Google Scholar 

  25. Cameron JR (2002) Radiation increased the longevity of British radiologists. Br J Radiol 75:637–640

    CAS  PubMed  Google Scholar 

  26. Fallahian N, Brey R, Watson C, James A (2007) Does exposure to plutonium affect workers' longevity? Health Phys 93:S11

    Google Scholar 

  27. Baverstock KF, Papworthy D (1987) The UK radium luminizer survey. Br J Radiol, Supplemental BIR Report 21, pp. 71–76

    Google Scholar 

  28. Vrijheid M, Cardis E, Blettner M et al (2007) The 15-country collaborative study of cancer risk among radiation workers in the nuclear industry: design, epidemiological methods and descriptive results. Radiat Res 167:361–379

    Article  CAS  PubMed  Google Scholar 

  29. UNSCEAR (2000) Sources and effects of ionizing radiation. United Nations Scientific Committee on the Effects of Atomic Radiation 2000 Report to the General Assembly, with Annexes. Volume II: Effects. No. E.00.IX.4. United Nations, New York, NY

    Google Scholar 

  30. Schull WJ (1998) The genetic effects of radiation: consequences for unborn life. Nucl Eur Worldscan (3–4):35–37

    Google Scholar 

  31. Damilakis J (2004) Pregnancy and diagnostic X-rays. Eur Radiol Syllabus 14:33–39

    Article  Google Scholar 

  32. Cigna AA, Durante M (2006) Radiation risks in normal and emergency situations. Springer, Dordrecht, pp 49–67

    Google Scholar 

  33. Chernobyl Forum (IAEA, WHO, UNDP, UNEP, UN-OCHA, UNSCEAR, World Bank) (2005) Chernobyl's legacy: health, environmental and socio-economic impacts (The work is in three volumes and 600 pages by more than 100 scientists)

    Google Scholar 

  34. Okazaki R, Ootsuyama A, Norimura T (2005) Radioadaptive response for protection against radiation-induced teratogenesis. Radiat Res 163:266–270

    Article  CAS  PubMed  Google Scholar 

  35. Wang B, Ohyama H, Shang Y et al (2004) Adaptive response in embryogenesis: V. Existence of two efficient dose-rate ranges for 0.3 Gy of priming irradiation to adapt mouse fetuses. Radiat Res 161:264–272

    Article  CAS  PubMed  Google Scholar 

  36. Luckey TD (1991) Radiation hormesis. CRC, Boca Raton, FL

    Google Scholar 

  37. Tanooka H (2001) Threshold dose-response in radiation carcinogenesis: an approach from chronic beta-irradiation experiments and a review of non-tumour doses. Int J Radiat Biol 77:541–551

    Article  CAS  PubMed  Google Scholar 

  38. Upton AC (1989) The question of threshold for radiation and chemical carcinogenesis. Cancer Invest 7:267–276

    Article  CAS  PubMed  Google Scholar 

  39. Tubiana M, Aurengo A (2006) Dose-effect relationship and estimation of the carcinogenic effects of low doses of ionizing radiation: the Joint Report of the Academie des Sciences (Paris) and of the Academie Nationale de Medecine. Int J Low Radiat 2:1–19

    Article  Google Scholar 

  40. Ogiso Y, Yamada Y, Iida H et al (1998) Differential dose responses of pulmonary tumor types in the rat after inhalation of plutonium dioxide aerosols. J Radiat Res 39:61–72

    Article  Google Scholar 

  41. Kuschner M, Laskin S, Nelson N etal (1958) Radiation induced bronchogenic carcinoma in rats. Am J Pathol 34:554

    Google Scholar 

  42. Sanders CL, Mahaffey JA (1979) Inhalation toxicology of transuranics in rodents. In: Biological implications of radionuclides released from nuclear industries. IAEA, Vienna, Austria, p 89

    Google Scholar 

  43. Scott BR (2007) Low-dose radiation-induced protective process and implications for risk assessment, cancer prevention, and cancer therapy. Dose Response 5:131–141

    Article  CAS  PubMed  Google Scholar 

  44. Sanders CL, Lauhala KE, McDonald KE (1993) Lifespan studies in rats exposed to 239PuO2 aerosol. III. Survival and lung tumors. Int J Radiat Biol 64:417–340

    Article  CAS  PubMed  Google Scholar 

  45. Peterson AV, Prentice RL, Marek P (1982) Relationship between dose of injected 239Pu and bone sarcoma mortality in young adult beagles. Radiat Res 90(1):77–89

    Article  Google Scholar 

  46. Wood D (1991) Long-term mortality and cancer risk in irradiated Rhesus monkeys. Radiat Res 126:132–140

    Article  CAS  PubMed  Google Scholar 

  47. Yochmowitz M, Wood D, Salmon Y (1985) Seventeen-year mortality experience of proton radiation in Macaca mulatta. Radiat Res 102:14–34

    Article  CAS  PubMed  Google Scholar 

  48. Maisin J, Wambersie A, Gerber G et al (1988) Life-shortening and disease incidence in C57BL mice after single and fractionated γ and high energy neutron exposure. Radiat Res 113:300–317

    Article  CAS  PubMed  Google Scholar 

  49. Ullrich RL, Storer JB (1979) Influence of gamma irradiation on the development of neoplastic disease in mice. II. Solid tumors. Radiat Res 80:317–324

    Article  CAS  PubMed  Google Scholar 

  50. Peterson AV, Prentice RL, Marek P (1982) Relationship between dose of injected 239Pu and bone sarcoma mortality in young adult beagles. Radiat Res 90(1):77–89

    Article  Google Scholar 

  51. Mitchel REJ, Jackson JS, McCann RA et al (1999) The adaptive response modifies latency for radiation-induced myeloid leukemia in CBA/H mice. Radiat Res 152:273–279

    Article  CAS  PubMed  Google Scholar 

  52. Ina Y, Tanooka H, Yamada T et al (2005) Suppression of thymic lymphoma induction by lifelong low-dose-rate irradiation accompanied by immune activation in C57BL/6 mice. Radiat Res 163:153–158

    Article  CAS  PubMed  Google Scholar 

  53. Lacoste-Collin L, Jozan S, Cances-Lauwers V et al (2007) Effect of continuous irradiation with a very low dose of gamma rays on life span and the immune system in SJL mice prone to B-cell lymphoma. Radiat Res 168:725–732

    Article  CAS  PubMed  Google Scholar 

  54. Sanders CL (1996) Prevention and therapy of cancer and other common diseases: alternative and traditional approaches. Infomedix, Richland, WA, 3000pp

    Google Scholar 

  55. Sanders CL, Thompson RC, Bair WJ (1970) Lung cancer: dose response studies with radionu-clides. Inhalation carcinogenesis, CONF-691001. NTIS, Springfield, VA, pp 285–303

    Google Scholar 

  56. Sanders CL, Dagle GE, Cannon WC et al (1976) Inhalation carcinogenesis of high-fired 239PuO2 in rats. Radiat Res 68:340–360

    Article  Google Scholar 

  57. Sanders CL, Lundgren D (1995) Pulmonary carcinogenesis in the F344 and Wistar rat following inhalation of 239PuO2. Radiat Res 144:206–214

    Article  CAS  PubMed  Google Scholar 

  58. Sanders CL, Lauhala KE, McDonald KE, Sanders GA (1993) Lifespan studies in rats exposed to 239PuO2 aerosol. I. Dosimetry. Health Phys 64(5):509–521

    Article  Google Scholar 

  59. Sanders CL, Scott BR (2007) Smoking and hormesis as confounding factors in radiation pulmonary carcinogenesis. Dose Response 6:53–79

    Article  Google Scholar 

  60. Sakai K, Hoshi Y, Nomura T et al (2003) Suppression of carcinogenic processes in mice by chronic low dose rat gamma-irradiation. Int J Low Radiat 1:142–146

    Article  Google Scholar 

  61. Ootsuyama A, Tanooka H (1991) Threshold-like dose of local β irradiation repeated throughout the life span of mice for induction of skin and bone tumors. Radiat Res 125:98–101

    Article  CAS  PubMed  Google Scholar 

  62. Mitchel REJ, Gragtmans NJ, Morrison DP (1999) Beta-radiation-induced resistance to MNNG initiation of papilloma but not carcinoma formation in mouse skin. Radiat Res 121:180–186

    Article  Google Scholar 

  63. Yamamoto O, Seyama T, Itoh H et al (1998) Oral administration of tritiated water (HTO) in mouse. III. Low dose-rate irradiation and threshold dose-rate for radiation risk. Int J Radiat Biol 73:535–541

    Article  CAS  PubMed  Google Scholar 

  64. Feinendegen LE (2005) Evidence for beneficial low level radiation effect and hormesis. Br J Radiol 78:3–7

    Article  CAS  PubMed  Google Scholar 

  65. Cohen SM, Purtilo DT, Ellwein LB (1991) Pivotal role of increased cell proliferation in human carcinogenesis. Mod Pathol 4:371–382

    CAS  PubMed  Google Scholar 

  66. Calabrese EJ, Baldwin LA (2001) Scientific foundations of hormesis. Crit Rev Toxicol 31:351–624

    Article  Google Scholar 

  67. Pollycove M, Feinendegen LE (2001) Biologic responses to low doses of ionizing radiation: detriment versus hormesis. Part 2: dose responses to organisms. J Nucl Med 42:26N–37N

    CAS  PubMed  Google Scholar 

  68. Pollycove M, Feinendegen LE (1999) Molecular biology, epidemiology and the demise of the linear no-threshold (LNT) assumption. C R Acad Sci Paris Life Sci 322:197–204

    CAS  Google Scholar 

  69. Aurengo A, Averbeck D, Bonnin A et al (2005) Dose-effect relationships and estimation of the carcinogenic effects of low doses of ionizing radiation. Executive Summary. French Academy of Sciences, French National Academy of Medicine

    Google Scholar 

  70. Bhattacherjee G, Ito A (2001) Deceleration of carcinogenic potential by adaptation with low dose gamma irradiation. In Vivo 15:87–92

    Google Scholar 

Download references

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

(2010). Lifespan, Birth Defects, and Experimental Cancer. In: Sanders, C.L. (eds) Radiation Hormesis and the Linear-No-Threshold Assumption. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-03720-7_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-03720-7_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-03719-1

  • Online ISBN: 978-3-642-03720-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics