Van Loon LC. Systemic induced resistance. In: Slusarenko AJ, Fraser RSS, van Loon LC, eds. Mechanisms of Resistance to Plant Diseases. Dordrecht, The Netherlands: Kluwer Academic Publishers. 2000, 521–574.
Google Scholar
Hammerschmidt R Induced resistance: How do induced plants stop pathogens? Physiol. Mol. Plant. Pathol. 1999, 55, 77–84
CAS
CrossRef
Google Scholar
Ryals J, Neuenschwan der U H, Willits M G, et al. Systemic acquired resistance. Plant Cell, 1996, 8, 1809–1819.
CAS
CrossRef
Google Scholar
Malamy J, Carr JP, Klessig DF, et al. Salicylic acid: a likely endogenous signal in the resistance response of tobacco to viral infection Science. 1990, 250, 1002–1004.
CAS
CrossRef
Google Scholar
Yalpani N, Silverman P, Wilson TM A, et al. salicylic-acid is a systemic signal and an inducer of pathogen es is-related proteins in virus-infected tobacco. Plant Cell 1991, 3, 809–818.
CAS
CrossRef
Google Scholar
Metraux JP, Signer H, Ryals J, et al. increase in salicylic acid at the onset of systemic acquired resistance in cucumber. Science 1990, 250, 1004–1006.
CAS
CrossRef
Google Scholar
Zhang GP, Song BA, Xue, W, et al. Synthesis and biological activities of novel dialkyl l-(4-trifluoromethylphenylamino)-l-(4-trifluoromethyl-or 3-fluoro-phenyl) methylphos phonate. J. Fluorine Chem 2006, 127, 48–53.
CAS
CrossRef
Google Scholar
Koukol J, Conn EE. The metabolism of aromatic: compounds in higher plants IV.Purification and properties of the phenylalanine deaminase of Herdeum Vulagare. J. Biol. Chem 1961, 23, 2692–2698.
Google Scholar
Rao MV, Paliyath G, Ormrod DP. Ultraviolet-B-and ozone-induced biochemical changes in antioxidant enzymes of Arabidopsis thaliana. Plant Physiol 1996, 110, 125–136.
CAS
Google Scholar
Castillo FJ, Penel C, Greppin H. Peroxidase release induced by ozone in sedum album leaves: involvement of Ca2+. Plant Physiol 1984, 74, 846–851.
CAS
CrossRef
Google Scholar
Dhindsa RA, Plumb-Dhindsa P, Thorpe TA. Leaf senescence: correlated with increased permeability and lipid peroxidation, and decreased levels of superoxide dismutase and catalase. J. Exp. Bot 1981, 126, 93–101.
CrossRef
Google Scholar
Sükran D, Tohit G, Ridvan S. Spectrophotometry determination of chlorophyll-A, B and total carotenoid contents of some algae species using different solvents. Armais botany 1998, 22, 13–17.
Google Scholar
Porra RJ, Grimme LH. A new procedure for the determination of chlorophylls a and b and its application to normal and regreening Chlorella A new procedure for the determination of chlorophylls a and b and its application to normal and regreening. Chlorella 1974, 57, 255–267.
CAS
Google Scholar
Achuo EA, Audenaert K, Höfte, M, et al. The salicylic acid-dependent defence pathway is effective against different pathogens in tomato and tobacco. Plant Pathology 2004, 53, 65–72.
CAS
CrossRef
Google Scholar
Raskin I, Turner IM, Melander WR. Regulation of heat production in the inflorescences of an Arum lily by endogenous salicylic acid. Proc Natl Acad Sci USA 1989, 86, 2214–2218.
CAS
CrossRef
Google Scholar
Wilkinson, M.F. Purification of RNA. In essential molecular biology: A practical approach (ed. Brown, T.A). Oxford University Press New York USA 1991, 1, 69–86.
Google Scholar
Yuan JS, Reed A, Chen F, et al. Statistical analysis of real-time PCR data. BMC Biomform 2006, 7, 85.
CrossRef
Google Scholar
Paent JG, Asselin A. Detection of pathogenesis-related (PR or b) and of other proteins in the intercellular fluid of hypersentitive plants infected with tobacco mosaic virus. Can J. Bot 1984, 62, 564–569.
CrossRef
Google Scholar
Rathmell WG, Sequeria L. Soluble peroxidase in fluid from the intercellular spaces of tobacco leaves. Plant Physiol 1974, 53:317–318.
CAS
CrossRef
Google Scholar
Bauer D, Warthoe P, Rohde M, et al. Detection and differential display of expressed genes by DDRT-PCR. PCR Methods Appl Manual Supplement (Cold Spring Harbor Laboratory, USA). 1994, S97–S108.
Google Scholar
Liang P, Pardee A. Differential display of eukaryotic messenger RNA by means of the polymerase chain reaction. Science 1992, 257, 967–970.
CAS
CrossRef
Google Scholar
Lee J, Cooper B. Alternative workflows for plant proteomic analysis. Mol Biosyst 2006, 2, 621–626.
CAS
CrossRef
Google Scholar
Florens L, Washburn MP. Proteomic analysis by multidimensional protein identification technology. Methods Mol. Biol 2006, 328, 159–175.
CAS
Google Scholar
Ünlü M, Morgan ME, Minden JS. Difference gel electrophoresis. A single gel method for detecting changes in protein extracts. Electrophoresis 1997, 18, 2071–2077.
CrossRef
Google Scholar
Prelog V. Chirality in chemistry. Science 1976, 193(4247), 17–24.
CAS
CrossRef
Google Scholar
Garay AS. Molecular chirality of life and intrinsic chirality of matter. Nature 1978, 271, 186.
CAS
CrossRef
Google Scholar
Inoue Y. Synthetic chemistry: light on chirality. Nature 2005, 436, 1099–1100.
CAS
CrossRef
Google Scholar
Liu WP, Gan JY, Schlenk D, et al. Enantioselectivity in environmental safety of current chiral insecticides. Proc. Natl. Acad Sci. U.SA 2005, 102, 701–706.
CAS
CrossRef
Google Scholar
Liu WP, Gan JY, Qin SJ. Separation and aquatic toxicity of enantiomers of synthetic pyrethroid insecticides. Chirality 2005, 17, 127–133.
CrossRef
Google Scholar
Hayes T, Haston K, Tsui M, et al. Atrazine-induced hermaphroditism at 0.1 ppb in American leopard frogs (Ranapipiens), laboratory and field evidence. Environ Health Perspect 2003, 111, 568–575.
CAS
CrossRef
Google Scholar
Lewis DL, Garrison AW, Wommack KE, et al. Influence of environmental changes on degradation of chiral pollutants in soils. Nature 1999, 401, 898–901.
CAS
CrossRef
Google Scholar
Kohler HPE, Angst W, Giger W, et al. Environmental fate of chiral pollutants the necessity of considering stereochemistry. Chimia 1997, 51, 947–951.
CAS
Google Scholar
Buser HR, Muller MD, Poiger T, et al. Environmental behavior of the chiral acetamide pesticide metalaxyl: Enantioselective degradation and chiral stability in soil. Environ Sci. Technol 2002, 36, 221–226.
CAS
CrossRef
Google Scholar
Garrison AW. Probing the enantio selectivity of chiral pesticides. Environ Sci. Technol 2006, 40, 16–23.
CrossRef
Google Scholar