Advertisement

Synthesis, Characterization and Antiviral Activity of Cyanoacrylates and Derivatives

  • Baoan Song
  • Linhong Jin
  • Song Yang
  • Pinaki S. Bhadury

Abstract

A series of novel cyanoacrylate derivatives 2.2a-2.2t containing phosphonyl moieties were synthesized by treatment of alkyl 2-cyano-3,3-dimethylthioacrylates and dialkyl phosphites with NaH in THF solvent. This method is easy and generates the title compounds in moderate yields. The structures were verified by spectroscopic data. In the antifungal bioassay, the title compounds 2.2d and 2.22t were found to possess the highest activities against three kinds of fungi in vitro. The bioassay results showed that these title compounds exhibited moderate to good anti-TMV bioactivity. Title compounds 2.2a and 2.2b showed better biological activity than their structurally related analogues 2.2c-2.2t.

Keywords

Microwave Irradiation Antiviral Activity Title Compound Ultrasonic Irradiation Chiral Compound 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Mackay S P, Omalley P J Z. Molecular modelling of the interaction between DCMU and the Q(B)-binding site of photosystem-II. Z Naturforsch 1993, 48c, 191–198.Google Scholar
  2. 2.
    Huppatz J L, Phillips J N, Rattigan B M. Cyanoacrylates. Herbicidal and photo synthetic inhibitory activity. Agric. Biol. Chem 1981, 45(12), 2769–2773.Google Scholar
  3. 3.
    Wang Q M, Li H, Li Y H, et al. Synthesis and herbicidal activity of 2-cyano-3-(2-chlorothiazol-5-yl) methylaminoacrylates. J. Agric. Food. Chem 2004, 52, 1918–1922.CrossRefGoogle Scholar
  4. 4.
    Wang L G, Wang F Y, Diao Y M, et al. Synthesis and fungicidal activity of ethyl 2-cyano-3-substituted-amino-3-(2-methylphenyl)propenoate. Chin. J. Org. Chem 2005, 25, 1254–1258.Google Scholar
  5. 5.
    Song B A, Yang S, Zhong H M, et al. Synthesis and bioactivity of 2-cyanoacrylates containing a trifluoromethylphenyl moiety. J. Fluorine Chem 2005, 126, 87–92.CrossRefGoogle Scholar
  6. 6.
    Zhang H P, Song B A, Zhong H M, et al. Synthesis of 2-cyanoacrylates containing pyridinyl moiety under ultrasound irradiation. J. Heterocyclic Chem 2005, 42, 1211–1214.CrossRefGoogle Scholar
  7. 7.
    Song B A, Zhang H P, Wang H, et al. Synthesis and antiviral activity of novel chiral cyanoacrylate derivatives. J. Agric. Food Chem 2005, 53, 7886–7891.CrossRefGoogle Scholar
  8. 8.
    Boehner B, Hall R G. Preparation of pyrazolylphosphonate pestcides. DE 4139849, 1992.Google Scholar
  9. 9.
    Cross H, Koeckritz A, Scheidecker S, et al. DE 4108345, 1992.Google Scholar
  10. 10.
    Fouque D, About-Jaudet E, Collignon N. Alpha-pyrazotyl-alkylphosphonates. Part II: a simple and efficient synthesis of diethyl-l-(pyrazol-4-yl)-alkyl phosphonates. Synth. Commun 1995, 25, 3443–3455.CrossRefGoogle Scholar
  11. 11.
    Huang W S, Yuan C Y. Studies on organophosphorus compounds 92: a facile synthesis of l-substituted-5-trifluoromethylimidazole-4-phosphonates. Synthesis 1996, 4, 511–513.CrossRefGoogle Scholar
  12. 12.a)
    Lu R J, Yang H Z. A novel approach to phosphonyl-substituted heterocyclic system (I). Tetrahedron Lett 1997, 8, 5201–5204CrossRefGoogle Scholar
  13. b).
    Chen K, Hu F Z, Zhang J H, et al. Progress in the synthetic methods of phosphonyl heterocyclic compouds. Chin. J. Org. Chem 2000, 20, 866–873.Google Scholar
  14. 13.
    Chen K, Yang H Z, Liu Z, et al. Synthesis of novel phosphonyl/ S-methyl ketene thioacetals and N-substituted phosphonyl/S-methyl thiocarbonates under microwave irradiation. Chin. J. Org. Chem 2001, 21, 690–692.Google Scholar
  15. 14.
    McCombie H, Sauders B C, Stacey G J. Esters containing phosphorus Part I. J. Chem. Soc 1945, 380–382.Google Scholar
  16. 15.
    Liu H Y, Sha Y L, Dai G X. et al. Synthesis of novel derivatives of 2-cyano-3-methylthio-3′-benzylamino-acrylates (acryl, amides) and their biological activity. Phosphorus, Sulfur Silicon 1999, 148, 235–241.CrossRefGoogle Scholar
  17. 16.
    Erwin D C, Sims J J, Borum D E, et al. Detection of the systemic fungicide, thiabendazole, in cotton plants and soil by chemical analysis and bioassay. Phytopathology 1971, 61, 964–967.CrossRefGoogle Scholar
  18. 17.
    Yang S, Gao X W, Diao C L, et al. Synthesis and antifungal activity of novel chiral α-amino-phosphonates containing fluorine moiety. Chin. J. Chem 2006, 24, 1581–1588.CrossRefGoogle Scholar
  19. 18.
    Gooding G V Jr, Hebert T T. A simple technique for purification of tobacco mosaic virus in large quantities. Phytopathology 1967, 57, 1285–1290.Google Scholar
  20. 19.
    McFadden H G, Craig D C, Huppatz J L, et al. X-Ray Structure analysis of a cyanoacrylate inhibitor of photosystem II electron transport. Z. Miturforsch 1991, 46C, 93–98.Google Scholar
  21. 20.
    Wang Q M, Sun H K, Cao H Y, et al. Synthesis and herbicidal activity of 2-cyano-3-substituted-pyridinemethyl amino aery lates. J. Agri. FoodChem 2003, 17, 5030–5035.CrossRefGoogle Scholar
  22. 21.
    Sun H K, Wang Q M, Huang R Q, et al. Synthesis and biological activity of novel cyanoaerylates containing ferrocenyl moiety. J. Organometallic Chem 2002, 655, 182–185.CrossRefGoogle Scholar
  23. 22.
    Jablonkai I. Alkylating reactivity and herbicidal activity of chloroacetamides. Pest Manag. Sei 2003, 59, 443–450.CrossRefGoogle Scholar
  24. 23.a)Nizamuddin M G, Manoj K S. Synthesis and fungicidal activity of substituted pyrazolo[5,4-b] pyridine/pyrid-6-ones and pyrazolo[5,4-d]thiazines. Bull. Chim. Farm, 2001, 140(5), 311–315Google Scholar
  25. b)Wang Q M, Sun H K, Huang R Q, et al. Synthesis and herbicidal activity of (Z)-ethoxyethyl 2-cyano-3-(2-methylthio-5-pyridylmethylamino) acrylates. Heteroatom Chem 2004, 15(1), 67–70.CrossRefGoogle Scholar
  26. 24.
    Kuzmin V E, Lozitsky V P, Kamalov G L, et al. Analysis of the structure — anticancer activity relationship in a set of Schiff bases of macrocyclic 2, 6-bis(2-and 4-formylaryloxymethyl)pyridines. Acta Biochimica Polonica 2000, 47(3), 867–875.Google Scholar
  27. 25.
    Liu H Y, Lu R J, Chen K, et al. Studies on bio-rational design of photosystem II Inhibitors (VII) synthesis and hill inhibitory activity of ethyl 2-cyano-3-methylthio-3-arylaminoacrylates. Chem. J. Chin. Univ 1999, 20(3), 711–714.Google Scholar
  28. 26.
    Denizot F, Long R. J Rapid colorimetric assay for cell growth and survival. Immunol Methods 1986, 89(2), 271–277.CrossRefGoogle Scholar
  29. 27.
    Skehan P, Storeng R, Scadiero D, et al. New colorimetric cytotoxicity assay for anticancer-drug screening. J. Natl. Cancer Inst 1990, 82, 1107–1112.CrossRefGoogle Scholar
  30. 28.
    Huppatz J L, Philips JN. Cyanoacrylate inhibitors of the hill reactions. IV. Binding characteristics of the hydrophobic domain. Z. Naturforsch 1987, 42c, 679–683.Google Scholar
  31. 29.a) Huppatz J L. Quantifying the inhibitor-target site interactions of photosystem II herbicides. Weed Sci 1996, (44), 743–748Google Scholar
  32. b).
    Phillips J N, Banham W K. Hydrogen Bonding of Cyanoacrylates with the D1 peptide. Z. Naturforsch 1993, 48c, 132–135Google Scholar
  33. c).
    Yu S. Y, Li Z M. Synthesis and biological activities of 2-cyano-3-6-chloro-3-pyridylmethyl)amino-3-aliphatic amine acrylonitrile. Chin. J. Pestic. Sci 2001, 3(3), 18Google Scholar
  34. d).
    Yu, S. Y; Li, Z. M. Synthesis of 2-cyano-3-[(6-chloro)-3-pyridylmethyl]-3-aliphatic amine ethyl acrylate. Chin. J. Pestic. Sei 2002, 4(3), 79Google Scholar
  35. e).
    Zhao Y G, Hung R Q, Cheng J R. Synthesis and biological activity of biscyano substituted acyclic ketene amines containing 2-chloro-5-pyridylmethyl group. Chem. J. Chin. Univ 1998, 19(10), 1620.Google Scholar
  36. 30.
    Liu H Y, Yang G F, Lu R J, et al. The crystalline and molecular structure of ethyl 3-benzyl amino-2-cyano-3-methylthioacrylate. Chem. J. Chin. Univ 1998, 19, 899.Google Scholar
  37. 31.a)
    Bose A K, Manilas M S, Ganguly S N, et al. More chemistry for less pollution: Applications for process development. Synthesis 2002, 11, 1578–1591CrossRefGoogle Scholar
  38. b).
    Varma R S. Solvent-free organic synthesis. Green Chemistry 1999, 1, 43–55.CrossRefGoogle Scholar
  39. 32.
    Jin L H, Zhong H M, Song B A, et al. Advance in the synthesis and biological activity of 2-cyanoacrylate. Chin. J. Synth. Chem 2005, 13(2), 113–117.Google Scholar
  40. 33.
    Yang S, Jin L H, Song B A, et al. The preparation method and bioactivity of cyanoacrylate derivatives. CN 1603307A, 2004.Google Scholar
  41. 34.
    Charles W H, Matthew E M, Isiah M W. Separation of the insecticidal Pyrethrin ester by capillary electro chromatography. J Chromatography A 2001, 905, 319–327.CrossRefGoogle Scholar
  42. 35.
    Hayes B L. Recent advances in microwave-ass isted synthesis. Aldrichimica Acta 2004, 37, 66–77.Google Scholar
  43. 36.
    Liu X, Huang R Q, Cheng M R, et al. Synthesis and bioactivity of S, N-ketene acetal containing pyridine methylene. Chem. J. Chin. Univ 1999, 20, 1404–1408.Google Scholar
  44. 37.
    Grozinger K. Synthesis of 3-amino-2-chloro-4-methylpyridine from acetone and ethyl cyanoacetate. US 6136982, 2000; Chem. Abstr 2000, 133, 120236.Google Scholar
  45. 38.
    Sheldrick G M. Program for empirical absorption correction of area detector data. University of Gottingen, Germany, 1996.Google Scholar
  46. 39.
    Sheldrick G M. SHELXTL V5. 1, Software reference manual, Bruker AXS, Inc., Madison, Wisconsin, USA, 1997.Google Scholar
  47. 40.
    Wilson A. J. International table for X-ray crystallography, vol. C, Kluwer Academic Publishers, Dordrecht, Tables 6. 1. 1.4 (pp. 500-502) and 4.2.6.8 (pp. 219-222) respectively, 1992.Google Scholar
  48. 41.
    Li S Z, Wang D M, Jiao S M. Pesticide experiment methods-fungicide sector. Agricuture Press of China, Beijing, 1991, 93–94.Google Scholar
  49. 42.
    Ouyang G P, Song B A, hang H P, et al. Synthesis and antiviral activity of novel chiral cyanoacrylate derivatives. Molecules 2005, 10, 1351–1357.CrossRefGoogle Scholar
  50. 43.
    Hari V, Das P. in plant dise ase virus control; Hadidi A, Khetarpal R K, Koganezawa H, Ed.; APS Press: St. Paul, 1998, 417–427.Google Scholar
  51. 44.
    Shadle G L, Wesley S V, Korth K L, et al. Phenylpropanoid compounds and disease resistance in transgenic tobacco with altered expression of L-pheny lalanine ammonia-lyase. Phytochemistry, 2003, 64, 153–161.CrossRefGoogle Scholar
  52. 45.
    He Z P. in A guide to experiments of chemical control for crops;He Z P., Ed.; Beijing Agricultural University Press: Beijing, 1933, 30–31. 46. Polle A, Otter T, Seifert F. Apoplastic peroxidases and lignification in needles of Norway Spruce (Picea abies L.). Plant Physiol 1994, 106, 53-60. 47. Beauchamp C, Fridovich J. Superoxide dismutase. Improved assay and an assay applicable to acrylamide gels. Anal. Biochem 1971, 444, 276-278.Google Scholar
  53. 48.
    Yamakawa H, Kamada H, Satoh M, et al. Spermine is a salicylate-independent endogenous inducer for both tobacco acidic pathogen es is-related proteins and resistance. Plant Physiol 1998, 118, 1213.CrossRefGoogle Scholar
  54. 49.
    Anand A, Zhou T, Trick H N, et al. Greenhouse and field testing of transgenic wheat plants stable expressing genes for thaumati-like protein, chitinase and glucanase against Fusarium graminearum. J. Exp. Bot 2003, 54, 1101–1111.CrossRefGoogle Scholar
  55. 50.
    Mohamed F, Lydia F, Masumi I. et al. Expression of potential defense responses of Asian and European pears to infection with Venturia nashicola Physiol. Mol. Plant Path 2004, 64(6), 319.CrossRefGoogle Scholar
  56. 51.
    Yuan J S, Reed A, Chen F, et al. Statistical analysis of real-time PCR data. BMC. Bioinform 2006, 7, 85.CrossRefGoogle Scholar
  57. 52.
    Milosevic N, Slusarenko A J. Active oxygen metabolism and lignification in the hypersensitive response inbean. Physiol Plant Pathol 1996, 49, 143–158.CrossRefGoogle Scholar
  58. 53.
    Wang Y C, Hu D W, Zhang Z G, et al. Purification and immun ocy to localization of a novel Phytophthora boehmeriae protein inducing the hypersensitive response and systemic acquired resistance in tobacco and Chinese cabbage. Physiol. Mol. Plant Path 2003, 63, 223–232.CrossRefGoogle Scholar
  59. 54.
    Sticher L, Mauch-Mani B, Metraux J P. Systemic acquired resistance. Annu Rev Phytopathol 1997, 35, 235–270.CrossRefGoogle Scholar
  60. 55.
    Malamy J, Carr J P, Klessigm D, et al. Salilcylic acid-a likely endogenous singnal in the resistance responses of tobacco to viral infection. Science 1990, 250, 1002–1004.CrossRefGoogle Scholar
  61. 56.
    Hahlbrock K, Scheel D. Physiology and molecular biology of phenylpropanoid metabolism. Ann. Rev. Plant. Physiol. Plant. Mol. Biol 1989, 40, 347–369.CrossRefGoogle Scholar
  62. 57.
    Rusmussen J B, Hammersschmidt R, Zook M N. Systemic induction of salicylic acid accumulation in cucumber after inoculation with Pseudomonas syringaepv. Syringae. Plant Physiol 1991, 97, 1342.CrossRefGoogle Scholar
  63. 58.
    Van Loon LC. Pathogen esis-related proteins. Plant Mol. Biol 1985, 4, 111–116.CrossRefGoogle Scholar
  64. 59.
    Tornero P, Gadea J, Conejero V, et al. Two PR1 genes from tomato are differentially regulated and reveal a novel mode of expression for a pathogenesis-related gene during the hypersensitive response and development. Mol. Plant-Microbe Interact 1997, 10, 624–634.CrossRefGoogle Scholar
  65. 60.
    Cheong N E, Choi Y O, Kim W Y, et al. Purification of an antifungal PR-5 protein from flower buds of brassicacampestris and cloning of Its Gene. Physiol Mol. Plant Pathol, 1997, 101, 583–590.Google Scholar
  66. 61.
    Huang W, Yang G F. Microwave-assisted, one-pot syntheses and fungicidal activity of polyflu orinated 2-benzylthiobenzothiazo. Bioorg. Med. Chem 2006, 14, 8280–8285.CrossRefGoogle Scholar
  67. 62.
    Zhou Z Z, Yang G F. Insecticidal lead identification by screening benzopyrano[3, 4-c]pyrazol-3-one library constructed from multiple-parallel synthesis under microwave irradiation. Bioorg. Med. Chem 2006, 14, 8666–8674CrossRefGoogle Scholar
  68. 63.a)
    Liu Y, Li H, Zhao Q, et al. Synthesis and herbicidal activity of 2-cyano-3-(2-fluoro-5-pyridyl) methylaminoacrylates. J. Fluorine Chem 2005, 126, 345–348CrossRefGoogle Scholar
  69. b).
    Liu Y, Cai B, Li Y, Song H, et al. Synthesis, crystal structure, and biological activities of 2-cyanoacrylates containing furan or tetrahydrofuran moieties. J. Agric. Food Chem 2007, 55, 3011–3017CrossRefGoogle Scholar
  70. c).
    Yang G F, Liu Z M, Liu J C, et al. Synthesis and properties of novel α-(1, 2,4-triazolo-[l,5-a]pyrimidine-2-oxyl)phosphonate derivatives. Heteroatom Chem 2000, 11, 313–316.CrossRefGoogle Scholar
  71. 64.
    Liu Y X, Wei D G, Zhu Y R, et al. Synthesis, herbicidal activities, and 3D-QSAR of 2-cyanoacrylates containing aromatic methylamine moieties. J. Agric. Food Chem 2008, 56, 204–212.CrossRefGoogle Scholar
  72. 65.
    McFadden H G, Phillips J N. Synthesisanduseofradiolabeled cyanoacrylate probes of photo system II herbicide binding site. Z. Naturforsch 1990, 45C, 196–202.Google Scholar
  73. 66.
    Lv Y P, Wang X Y, Song B A, et al. Synthesis, antiviral and antifungal bioactivity of 2-cyanoaery late derivatives containing phosphonyl moieties. Molecules 2007, 12, 965–978.CrossRefGoogle Scholar
  74. 67.
    Chen Z, Wang X Y, Song B A, et al. Synthesis and antiviral activities of novel chiral cyanoacrylate derivatives with (E) configuration. Bioorg. Med. Chem 2008, 16, 3076–3083.CrossRefGoogle Scholar
  75. 68.
    Gioia P 1, Chuah P H, Sclapari T. Herbicidal composition comprising an aminophosphate or aminophosphonate salt. WO 2007054540, 2007.Google Scholar
  76. 69.
    Kafarski P, Lejczak B. Biological activity of aminophosphonic acids. Phosphorus Sulfur 1991, 63, 193–215.CrossRefGoogle Scholar
  77. 70.
    Jin L H, Song B A, Zhang G P, et al. Synthesis, X-ray crystallographic analysis, and antitumor activity of N-(benzothiazole-2-yl)-l-(fluorophenyl)-O,O-dialkyl-α-amino p ho sphonates. Bioorg. Med. Chem. Lett 2006, 16, 1537–1543.CrossRefGoogle Scholar
  78. 71.
    Kafarski P, Lejczak B. Aminophosphonic acids of potential medical importance. Curr. Med. Chem. Anti-Cancer Agents 2001, 1, 301–312.CrossRefGoogle Scholar
  79. 72.
    Lintunen T, Yli-Kauhaluoma J T. Synthesis of aminophosphonate haptens for an aminoacylation reaction between methyl glucoside and a-alanyl ester. Bioorg. Med. Chem. Lett 2000, 10, 1749–1750.CrossRefGoogle Scholar
  80. 73.
    Liu W, Rogers C J, Fisher A J, et al. Aminophosphonate inhibitors of dialkylglycine decarboxylase: Structural basis for slow, tight binding inhibition. Biochem 2002, 41, 12320–12328.CrossRefGoogle Scholar
  81. 74.
    Pan W D, Ansiaux C, Vincent S P. Synthesis of acyclic galactitol-and ryxitol-aminophosphonates as inhibitors of UDP-galactopyranose mutase. Tetrahedron Letters 2007, 48, 4353–4356.CrossRefGoogle Scholar
  82. 75.
    Deng S L, Baglin I, Nour M, et al. Synthesis of ursolic phosphonate derivatives as potential anti-HIV agents. Phosphorus, Sulfur and Silicon and the RelatedElements 2007, 182, 951–967.CrossRefGoogle Scholar
  83. 76.
    Zhang G P, Song B A, Xue W, et al. Synthesis and biological activities of novel dialkyl l-(4-trifluoromethyl-phenylamino)-1-(4-trifluoromethyl or 3-fluorophenyl) methylphosphonate. J. Fluorine Chem 2006, 127, 48–53.CrossRefGoogle Scholar
  84. 77.
    Xu YS, YanK, Song B A, et al. Synthesis and antiviral bioactivities of α-aminophosphonates containing alkoxyethyl moieties. Molecules 2006, 11, 666–676.CrossRefGoogle Scholar
  85. 78.
    Song B A, Wu YL, Huang R M. Synthesis of plant virucidal fluorine containing α-aminophosphonates. CN 1432573, 2003; Patent approval certificate. No. ZL02113252. 6; Chem. Abstr 2005, 142, 482148.Google Scholar
  86. 79.
    Song B A, Zhang G P, Hu D Y, et al. N-substituted benzothiazolyl-1-substituted phenyl-O, O-dialkyl-alpha-amino phosphonate ester derivatives preparation and application. CN 1687088, 2005; Patent approval certificate. No. ZL0200510003041. 7; Chem. Abstr 2006, 145, 145879.Google Scholar
  87. 80.
    Li C H, Song B A, Yan K, et al. One Pot Synthesis of α-aminophosphonates containing bromo and 3, 4, 5-trimethoxybenzy l groups under solvent-free conditions. Molecules 2007, 12, 163–172.CrossRefGoogle Scholar
  88. 81.
    Hu D Y, Wan Q Q, Yang S, et al. Synthesis and antiviral activities of amide derivatives containing α-aminophosphonate moiety. J. Agric Food Chem 2008, 56(3), 998–1001.CrossRefGoogle Scholar
  89. 82.
    Huang R Q, Wang H, Zhou J. Preparation of organic intermediate; Chemical industry press of China, Beijing, China, 2001, 224–225.Google Scholar
  90. 83.
    Kaboudin B, Moradi K. A simple and convenient procedure for the synthesis of 1-aminophosphonates from aromatic aldehydes. Tetrahedron Lett 2005, 46, 2989–2991.CrossRefGoogle Scholar
  91. 84.
    Long N, Cai X J, Song B A, et al. Synthesis and antiviral activities of cyanoacrylate derivatives containing an alpha-aminophosphonate moiety. J. Agric Food Chem 2008, 56(13), 5242–5246.CrossRefGoogle Scholar

Copyright information

© Chemical Industry Press, Beijing and Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Baoan Song
    • 1
  • Linhong Jin
    • 1
  • Song Yang
    • 1
  • Pinaki S. Bhadury
    • 1
  1. 1.Center for R&D of Fine ChemicalsGuizhou UniversityGuiyangChina

Personalised recommendations