Digital Watermarking Schemes Using Multi-resolution Curvelet and HVS Model

  • H. Y. Leung
  • L. M. Cheng
  • L. L. Cheng
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5703)

Abstract

In this paper, a robust non-blind watermarking scheme based on Curvelet transform is proposed. This work extends the work proposed by Leung [1] to increase the quality of watermarked image. The proposed algorithm modifies the watermark extracting rule and adds a Human Visual System (HVS model). The experimental results demonstrate that the proposed algorithm can provide great robustness against most image processing methods.

Keywords

Watermarking curvelet HVS 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Leung, H.Y., Cheng, L.M., Cheng, L.L.: A Robust Watermarking Scheme using Selective Curvelet Coefficients. In: 2008 International Conference on Intelligent Information Hiding and Multimedia Signal Processing, Harbin, China, pp. 465–468 (2008)Google Scholar
  2. 2.
    Lutz, R.: Software Engineering for Safety: A Roadmap, in The Future of Software Engineering. In: Finkelstein, A. (ed.) ICSE 2000, pp. 213–224. ACM Press, New York (2000)Google Scholar
  3. 3.
    Sindre, G., Opdahl, A.L.: Eliciting security requirements by misuse cases. In: Proc. 37th Technology of Object-Oriented Languages and Systems (TOOLS-37 Pacific 2000), Sydney, Australia, pp. 120–131 (2000)Google Scholar
  4. 4.
    Hermann, D.S.: Software Safety and Reliability: Techniques, Approaches, and Standards of Key Industrial Sectors. Wiley-IEEE Computer Society Press (2000)Google Scholar
  5. 5.
    Fenton, N.E., Neil, M.: A strategy for improving safety related software engineering standards. IEEE Trans on Software Eng. 24, 1002–1013 (1998)CrossRefGoogle Scholar
  6. 6.
    Candes, E.J., Donoho, D.L.: New tight frames of curvelets and optimal repesentations of objects with C2 singularities. Communications on Pure and Applied Mathematics 57, 219–266 (2004)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Candes, E.J., Donoho, D.L.: Fast Discrete Curvelet Transform. Applied and Computational Mathmatics, California Institute of Technology, 1–43 (2005)Google Scholar
  8. 8.
    He, K.-f., Gao, J., Hu, L.-m., Gao, H.-y.: Watermarking for images using the HVS and SVD in the wavelet domain. In: Proceedings of the 2006 IEEE International Conference on Mechatronics and Automation, pp. 2352–2356 (2006)Google Scholar
  9. 9.
    Maity, S.P., Kundu, M.K.: An ImageWatermarking Scheme using HVS Characteristics and Spread Transform. In: Proceedings of the 17th International Conference on Pattern Recognition, vol. 4, pp. 869–871 (2004)Google Scholar
  10. 10.
    Delaigle, J.F., Vleeschouwer, C.D., Macq, B.: Watermarking Algorithm Based on A Human Visual Model. Signal Processing 66, 319–335 (1998)CrossRefMATHGoogle Scholar
  11. 11.
    Podilchuk, C.I., Zeng, W.: Image-adaptive watermarking using visual models. IEEE Journal on Selected Areas in Communications 16, 525–538 (1998)CrossRefGoogle Scholar
  12. 12.
    Hannigan, B.T., Reed, A., Bradley, B.: Digital Watermarking Using Improved Human Visual System Model. In: Proc. SPIE Electronic Image, Security and Watermarking of Multimedia Content, San Jose, CA, vol. 4314, pp. 468–474 (2001)Google Scholar
  13. 13.
    Taoa, P., Dexterb, S., Eskiciogluc, A.M.: Robust Digital Image Watermarking in Curvelet Domain. In: Proceedings of the SPIE, vol. 6819, pp. 68191B–68191B-12 (2008)Google Scholar
  14. 14.
    Xiao, Y., Cheng, L.M., Cheng, L.L.: A Robust Image Watermarking Scheme Based on A Novel HVS Model in Curvelet Domain. In: 2008 International Conference on Intelligent Information Hiding and Multimedia Signal Processing, Harbin, China, pp. 343–346 (2008)Google Scholar
  15. 15.
    Cornsweet, T.N.: Visual Perception, ch. 12, pp. 311–364. Academic press, London (1970)CrossRefGoogle Scholar
  16. 16.
    Mannos, J.L., Sarkrison, D.J.: The Effects of a Visual Fidelity Criterion on the Encoding of Images. IEEE Transactions on Information Theory 20, 525–536 (1974)CrossRefMATHGoogle Scholar
  17. 17.
    Campbell, F.W., Kulikowski, J.J., Levinson, J.: Orientational Selectivity of The Human Visual System. The Journal of Physiology 187, 437–445 (1966)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • H. Y. Leung
    • 1
  • L. M. Cheng
    • 1
  • L. L. Cheng
    • 1
  1. 1.Department of Electronic EngineeringCity University of Hong KongHong Kong SAR

Personalised recommendations