A Survey of Passive Image Tampering Detection

  • Wei Wang
  • Jing Dong
  • Tieniu Tan
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5703)

Abstract

Digital images can be easily tampered with image editing tools. The detection of tampering operations is of great importance. Passive digital image tampering detection aims at verifying the authenticity of digital images without any a prior knowledge on the original images. There are various methods proposed in this filed in recent years. In this paper, we present an overview of these methods in three levels, that is low level, middle level, and high level in semantic sense. The main ideas of the proposed approaches at each level are described in detail, and some comments are given.

Keywords

Image Tampering Image Tampering Detection Imaging Process Image Model 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Kundur, D., Hatzinakos, D.: Digital watermarking for telltale tamper proofing andauthentication. Proceedings of the IEEE 87(7), 1167–1180 (1999)CrossRefGoogle Scholar
  2. 2.
    Rey, C., Dugelay, J.: A survey of watermarking algorithms for image authentication. EURASIP Journal on Applied Signal Processing 2002(6), 613–621 (2002)CrossRefMATHGoogle Scholar
  3. 3.
    Sencar, H.T., Memon, N.: Overview of state-of-the-art in digital image forensics, part of indian statistical institute platinum jubilee monograph series titled ’statistical science and interdisciplinary research (2008)Google Scholar
  4. 4.
    Chen, M., Fridrich, J., Goljan, M., Lukas, J.: Determining image origin and integrity using sensor noise. IEEE Transactions on Information Forensics and Security 3(1), 74–90 (2008)CrossRefGoogle Scholar
  5. 5.
    Lin, Z., Wang, R., Tang, X., Shum, H.Y.: Detecting doctored images using camera response normality and consistency. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol. 1, pp. 1087–1092 (2005)Google Scholar
  6. 6.
    Farid, H.: Creating and detecting doctored and virtual images: Implications to the child pornography prevention act. Technical Report TR2004-518, Department of Computer Science, Dartmouth College (2004)Google Scholar
  7. 7.
    Li, Y., Sun, J., Tang, C., Shum, H.: Lazy snapping. In: International Conference on Computer Graphics and Interactive Techniques, pp. 303–308. ACM, New York (2004)Google Scholar
  8. 8.
    Ng, T.T., Chang, S.F., Lin, C.Y., Sun, Q.: Passive-blind image forensics. In: Multimedia Security Technologies for Digital Rights Management. Elsevier, Amsterdam (2006)Google Scholar
  9. 9.
    He, J., Lin, Z., Wang, L., Tang, X.: Detecting doctored JPEG images via DCT coefficient analysis. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3953, pp. 423–435. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  10. 10.
    Swaminathan, A., Wu, M., Liu, K.: Digital image forensics via intrinsic fingerprints. IEEE Trans. Info. Forensics and Security 3(1), 101–117 (2008)CrossRefGoogle Scholar
  11. 11.
    Popescu, A., Farid, H.: Exposing digital forgeries in color filter array interpolated images. IEEE Transactions on Signal Processing 53(10), 3948–3959 (2005)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Popescu, A., Farid, H.: Exposing digital forgeries by detecting traces of resampling. IEEE Transactions on Signal Processing 53(2), 758–767 (2005)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Popescu, A., Farid, H.: Statistical tools for digital forensics. In: 6th International Workshop on Information Hiding, pp. 128–147. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  14. 14.
    Mahdian, B., Saic, S.: Blind authentication using periodic properties of interpolation. IEEE Transactions on Information Forensics and Security 3(3), 529–538 (2008)CrossRefGoogle Scholar
  15. 15.
    Mahdian, B., Saic, S.: Detection and description of geometrically transformed digital images. In: Proc. SPIE, Media Forensics and Security, vol. 7254, pp. 72540J–72548J (2009)Google Scholar
  16. 16.
    Johnson, M., Farid, H.: Exposing digital forgeries through chromatic aberration. In: Proceedings of the 8th workshop on Multimedia and security, pp. 48–55. ACM, New York (2006)Google Scholar
  17. 17.
    Lukáš, J., Fridrich, J., Goljan, M.: Detecting digital image forgeries using sensor pattern noise. In: Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, vol. 6072, pp. 362–372 (2006)Google Scholar
  18. 18.
    Chen, M., Fridrich, J., Goljan, M., Lukas, J.: Determining image origin and integrity using sensor noise. IEEE Transactions on Information Forensics and Security 3(1), 74–90 (2008)CrossRefGoogle Scholar
  19. 19.
    Swaminathan, A., Wu, M., Liu, K.: Non-intrusive component forensics of visual sensors using output images. IEEE Transactions on Information Forensics and Security 2(1), 91–106 (2007)CrossRefGoogle Scholar
  20. 20.
    Swaminathan, A., Wu, M., Liu, K.: Component forensics of digital cameras: A non-intrusive approach. In: Annual Conference on Information Sciences and Systems, pp. 1194–1199 (2006)Google Scholar
  21. 21.
    Fu, D., Shi, Y., Su, W., et al.: A generalized Benford’s law for JPEG coefficients and its applications in image forensics. In: Proc. of SPIE Security, Steganography, and Watermarking of Multimedia Contents., vol. 6505, pp. 47–58 (2007)Google Scholar
  22. 22.
    Luo, W., Qu, Z., Huang, J., Qiu, G.: A novel method for detecting cropped and recompressed image block. In: IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), vol. 2, pp. 217–220 (2007)Google Scholar
  23. 23.
    Ye, S., Sun, Q., Chang, E.: Detecting digital image forgeries by measuring inconsistencies of blocking artifact. In: IEEE International Conference on Multimedia and Expo, pp. 12–15 (2007)Google Scholar
  24. 24.
    Farid, H.: Exposing digital forgeries form jpeg ghosts. IEEE transactions on information forensics and security 4(1), 154–160 (2009)CrossRefGoogle Scholar
  25. 25.
    Farid, H., Lyu, S.: Higher-order wavelet statistics and their application to digital forensics. In: IEEE Conference on Computer Vision and Pattern Recognition Workshop (2003)Google Scholar
  26. 26.
    Bayram, S., Avcıbaş, İ., Sankur, B., Memon, N.: Image manipulation detection. Journal of Electronic Imaging 15(4), 1–17 (2006)CrossRefGoogle Scholar
  27. 27.
    Avcibas, I., Memon, N., Sankur, B.: Steganalysis using image quality metrics. IEEE transactions on Image Processing 12(2), 221–229 (2003)MathSciNetCrossRefGoogle Scholar
  28. 28.
    Avcibas, I.: Image steganalysis with binary similarity measures. EURASIP Journal on Applied Signal Processing 2005(17), 2749–2757 (2005)CrossRefMATHGoogle Scholar
  29. 29.
    Lyu, S., Farid, H.: Steganalysis using higher-order image statistics. IEEE Transactions on Information Forensics and Security 1(1), 111–119 (2006)CrossRefGoogle Scholar
  30. 30.
    Shi, Y.Q., Chen, C.-H., Xuan, G., Su, W.: Steganalysis versus splicing detection. In: Shi, Y.Q., Kim, H.-J., Katzenbeisser, S. (eds.) IWDW 2007. LNCS, vol. 5041, pp. 158–172. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  31. 31.
    Shi, Y., Chen, C., Chen, W.: A natural image model approach to splicing detection. In: Proceedings of the 9th workshop on Multimedia & security, pp. 51–62. ACM Press, New York (2007)Google Scholar
  32. 32.
    Farid, H.: Detecting digital forgeries using bispectral analysis. Technical report, MIT AI Memo AIM-1657, MIT (1999)Google Scholar
  33. 33.
    Ng, T.T., Chang, S.F., Sun, Q.: Blind detection of photomontage using higher order statistics. In: IEEE International Symposium on Circuits and Systems, vol. 5, pp. 688–691 (2004)Google Scholar
  34. 34.
    Ng, T.T., Chang, S.F.: A model for image splicing. In: IEEE International Conference on Image Processing, vol. 2, pp. 1169–1172 (2004)Google Scholar
  35. 35.
    Fridrich, J., Soukal, D., Lukas, J.: Detection of copy-move forgery in digital images. In: Digital Forensic Research Workshop (2003)Google Scholar
  36. 36.
    Popescu, A., Farid, H.: Exposing digital forgeries by detecting duplicated image regions. Technical report, Department of Computer Science, Dartmouth CollegeGoogle Scholar
  37. 37.
    Bayram, S., Sencar, H.T., Memon, N.: An efficient and robust method for detecting copy-move forgery. In: IEEE International Conference on Acoustics, Speech, and Signal Processing. (2009)Google Scholar
  38. 38.
    Chen, W., Shi, Y., Su, W.: Image splicing detection using 2-d phase congruency and statistical moments of characteristic function. In: Security, Steganography and Watermarking of Multimedia Contents IX, Proceeding. of SPIE, San Jose, CA, USA (2007)Google Scholar
  39. 39.
    Hsiao, D., Pei, S.: Detecting digital tampering by blur estimation. In: International Workshop on Systematic Approaches to Digital Forensic Engineering, pp. 264–278 (2005)Google Scholar
  40. 40.
    Johnson, M., Farid, H.: Exposing digital forgeries by detecting inconsistencies in lighting. In: Proceedings of the workshop on Multimedia and security, pp. 1–10 (2005)Google Scholar
  41. 41.
    Johnson, M., Farid, H.: Exposing digital forgeries in complex lighting environments. IEEE Transactions on Information Forensics and Security 2(3), 450–461 (2007)CrossRefGoogle Scholar
  42. 42.
    Johnson, M., Farid, H.: Exposing digital forgeries through specular highlights on the eye. In: International Workshop on Information Hiding (2007)Google Scholar
  43. 43.
    Gloe, T., Kirchner, M., Winkler, A., Böhme, R.: Can we trust digital image forensics? In: Proceedings of the 15th international conference on Multimedia, pp. 78–86. ACM, New York (2007)CrossRefGoogle Scholar
  44. 44.
    Kirchner, M., Bohme, R.: Tamper hiding: Defeating image forensics. In: Furon, T., Cayre, F., Doërr, G., Bas, P. (eds.) IH 2007. LNCS, vol. 4567, pp. 326–341. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  45. 45.
    Ng, T., Chang, S., Sun, Q.: A data set of authentic and spliced image blocks. Technical report, DVMM, Columbia University (2004), http://www.ee.columbia.edu/ln/dvmm/downloads/AuthSplicedDataSet/photographers.htm

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Wei Wang
    • 1
  • Jing Dong
    • 1
  • Tieniu Tan
    • 1
  1. 1.National Laboratory of Pattern RecognitionInstitute of Automation, Chinese Academy of SciencesBeijingP.R. China

Personalised recommendations