Dot-Size Variant Visual Cryptography

  • Jonathan Weir
  • Wei-Qi Yan
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5703)

Abstract

In this paper, we propose a scheme by which a secure random share can be generated using a dot-size variant form of visual cryptography (VC). We generate two extended style VC shares, when the share is viewed, it appears as a normal random visual cryptography share. However, this scheme is designed with spatial filtering in mind, this is the dot-size variant part of the scheme. Dot-size variant means that instead of having single black and white dots which make up a VC share, we use a cluster of smaller dots to represent these black and white pixels. This means that after printing, if the share is scanned or photocopied or even viewed with a mobile phone or digital camera, the smallest dots in the scheme are filtered. This loss of information during the copying process allows the original share to have additional security in that accurate copies cannot be created, as well as the fact that due to this loss, the copied share looks totally different from the original. This technique can be used to detect possible counterfeit shares and copies as they will be noticeably different from the original. One major advantage of our scheme is that it works with traditional print techniques and required no special materials. We present our results within this paper.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Memon, N., Wong, P.W.: Protecting digital media content. Communications of the ACM 41(7), 35–43 (1998)CrossRefGoogle Scholar
  2. 2.
    Chang, C.C., Tseng, H.W.: A steganographic method for digital images using side match. Pattern Recognition Letters 25(12), 1431–1437 (2004)CrossRefGoogle Scholar
  3. 3.
    Liu, C.L., Liao, S.R.: High-performance jpeg steganography using complementary embedding strategy. Pattern Recognition 41(9), 2945–2955 (2008)CrossRefMATHGoogle Scholar
  4. 4.
    Fu, M.S., Au, O.: Joint visual cryptography and watermarking. In: ICME 2004, vol. 2, pp. 975–978 (2004)Google Scholar
  5. 5.
    Hassan, M.A., Khalili, M.A.: Self watermarking based on visual cryptography. In: Proceedings of World Academy of Science, Engineering and Technology, vol. 8, pp. 159–162 (2005)Google Scholar
  6. 6.
    Wu, C.W., Thompson, G.R., Stanich, M.J.: Digital watermarking and steganography via overlays of halftone images, vol. 5561, pp. 152–163. SPIE (2004)Google Scholar
  7. 7.
    Naor, M., Shamir, A.: Visual cryptography. In: De Santis, A. (ed.) EUROCRYPT 1994. LNCS, vol. 950, pp. 1–12. Springer, Heidelberg (1995)CrossRefGoogle Scholar
  8. 8.
    Ateniese, G., Blundo, C., Santis, A.D., Stinson, D.R.: Extended schemes for visual cryptography. Theoretical Computer Science 250, 1–16 (1996)MATHGoogle Scholar
  9. 9.
    Ateniese, G., Blundo, C., Santis, A.D., Stinson, D.R.: Visual cryptography for general access structures. Information and Computation 129(2), 86–106 (1996)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Yang, C.-N., Chen, T.-S.: Extended visual secret sharing schemes with high-quality shadow images using gray sub pixels. In: Kamel, M.S., Campilho, A.C. (eds.) ICIAR 2005. LNCS, vol. 3656, pp. 1184–1191. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  11. 11.
    Ito, R., Kuwakado, H., Tanaka, H.: Image size invariant visual cryptography. IEICE Transactions E82-A(10), 2172–2177 (1999)Google Scholar
  12. 12.
    Yang, C.N.: New visual secret sharing schemes using probabilistic method. Pattern Recognition Letters 25(4), 481–494 (2004)CrossRefGoogle Scholar
  13. 13.
    Yang, C.N., Chen, T.S.: Aspect ratio invariant visual secret sharing schemes with minimum pixel expansion. Pattern Recognition Letters 26(2), 193–206 (2005)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Yang, C.N., Chen, T.S.: New size-reduced visual secret sharing schemes with half reduction of shadow size. IEICE Transactions 89-A(2), 620–625 (2006)CrossRefGoogle Scholar
  15. 15.
    Yang, C.-N., Chen, T.-S.: Visual secret sharing scheme: Improving the contrast of a recovered image via different pixel expansions. In: Campilho, A., Kamel, M.S. (eds.) ICIAR 2006. LNCS, vol. 4141, pp. 468–479. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  16. 16.
    Hofmeister, T., Krause, M., Simon, H.U.: Contrast-optimal k out of n secret sharing schemes in visual cryptography. Theoretical Computer Science 240(2), 471–485 (2000)MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Blundo, C., D’Arco, P., Santis, A.D., Stinson, D.R.: Contrast optimal threshold visual cryptography schemes. SIAM Journal on Discrete Mathematics 16(2), 224–261 (2003)MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Yang, C.-N., Wang, C.-C., Chen, T.-S.: Real perfect contrast visual secret sharing schemes with reversing. In: Zhou, J., Yung, M., Bao, F. (eds.) ACNS 2006. LNCS, vol. 3989, pp. 433–447. Springer, Heidelberg (2006)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Jonathan Weir
    • 1
  • Wei-Qi Yan
    • 1
  1. 1.Queen’s University BelfastBelfastUK

Personalised recommendations