Temporal Statistic Based Video Watermarking Scheme Robust against Geometric Attacks and Frame Dropping

  • Chong Chen
  • Jiangqun Ni
  • Jiwu Huang
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5703)


Robustness against geometric attacks is still considered to be one of the major challenging issues in the development of watermarking algorithm, especially for video watermarking. This paper presents a multi-bit video watermarking scheme resilient to geometric attacks and frame dropping by utilizing the geometric invariant sequence generated from the average dc energy of the input video and the temporal statistic described by its histogram. Firstly, the average dc energy of frame is introduced and three of its geometric invariance natures, i.e. rotation, scaling and translation, are proved. Then the watermarks are embedded into the histogram of average dc energy sequence of video frame. The embedding strategy is implemented by reassigning the populations in groups of two consecutive bins in the histogram. The simulation results demonstrate that the proposed watermarking scheme achieves satisfactory performances against geometric and common signal processing attacks, and intense frame dropping and averaging.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Dong, P., Brankov, J.G., Galatsanos, N.P., Yang, Y.Y., Davoine, F.: Affine transformation resistant watermarking based on image normalizaton. IEEE Trans. Image Process 14(12), 2140–2150 (2005)CrossRefGoogle Scholar
  2. 2.
    Lin, C.Y., Wu, M., Bloom, J.A., Cox, J., Miller, M.L., Lui, Y.M.: Rotation, Scale and Translation Resilient Watermarking for Images. IEEE Trans. on Image Processing 10, 767–782 (2001)CrossRefMATHGoogle Scholar
  3. 3.
    Ruanaidh, J., Pun, T.: Rotation, Scale and Translation Invariant Spread Spectrum Digital Image Watermarking. Signal Processing 6(3), 303–317 (1998)CrossRefMATHGoogle Scholar
  4. 4.
    Ruanaidh, J.J.K.Ó., Pun, T.: Rotation, scale and translation invariant digital image watermarking. In: Proc. ICIP 1997, IEEE Int. Conf. Image Processing, Santa Barbara, CA, October 1997, pp. 536–539 (1997) Google Scholar
  5. 5.
    ISetyawan, G.K., Lagendijk, R.L.: Synchronization-insensitive video watermarking using structured noise pattern. In: Proc. SPIE, Security and Watermarking of Multimedia Contents IV, San Jose, CA, pp. 520–530 (2002)Google Scholar
  6. 6.
    Kutter, M.: Watermarking Resistance to Translation, Rotation and Scaling. In: Proc. of SPIE: Media Systems Applications, vol. 3528, pp. 423–431 (1998)Google Scholar
  7. 7.
    ISetyawan, et al.: Perceptual quality evaluation of geometrically distorted images using relevant geometric transformation modeling. In: Proc SPIE, Security and Watermarking of Multimedia Contents V, vol. 5020 (2003)Google Scholar
  8. 8.
    Kang, X., Huang, J., Shi, Y., Lin, Y.: A DWT-DFT composite watermarking scheme robust to both affine transform and JPEG compression. IEEE Trans. Circuits Syst. Video Technol. 13(8), 776–786 (2003)CrossRefGoogle Scholar
  9. 9.
    Pereira, S., Pun, T.: Robust template matching for affine resistant image watermarks. IEEE Trans. Image Process. 9(6), 1123–1129 (2000)CrossRefGoogle Scholar
  10. 10.
    Pereira, S., Pun, T.: An iterative template matching algorithm using the Chirp-Z transform for digital image watermarking. Pattern Recognit. 33, 173–175 (2000)CrossRefGoogle Scholar
  11. 11.
    Kutter, M., Bhattacharjee, S.K., Ebrahimi, T.: Towards second generation watermarking schemes. In: Proc. IEEE Int. Conf. Image Process., pp. 320–323 (1999)Google Scholar
  12. 12.
    Alghoniemy, M., Tewfik, A.: Geometric distortion correction through image normalization. In: Proc. IEEE Int. Conf. Multimedia Expo, vol. 3, pp. 1291–1294 (2000)Google Scholar
  13. 13.
    Kim, H.S., Lee, H.K.: Invariant image watermark using Zernike moments. IEEE Trans.Circuits Syst. Video Technol. 13(8), 766–775 (2003)CrossRefGoogle Scholar
  14. 14.
    Loo, P., Kingsbury, N.: Motion-estimation-based registration of geometrically distorted image for watermark recovery. In: Proc. SPIE, Security and Watermarking of Multimedia Contents III, San Jose, CA, pp. 606–617 (2001)Google Scholar
  15. 15.
    Delannay, D., Delaigle, J.-F., Macq, B., Barlaud, M.: Compensation of geometrical deformations for watermark extraction in the digital cinema application. In: Proc. SPIE, Security and Watermarking of Multimedia Contents III, San Jose, CA, pp. 149–157 (2001)Google Scholar
  16. 16.
    Xiang, S., Huang, J., Yang, R.: Time-scale invariant audio watermarking based on the statistical features in time domain. In: Camenisch, J.L., Collberg, C.S., Johnson, N.F., Sallee, P. (eds.) IH 2006. LNCS, vol. 4437, pp. 93–108. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  17. 17.
    Xiang, S., Huang, J.: Histogram-based audio watermarking against time-scale modification and cropping attacks. IEEE Trans. Multimedia 9(7), 1357–11372 (2007)CrossRefGoogle Scholar
  18. 18.
    Liu, H., Chen, N., Huang, J., Huang, X., Shi, Y.Q.: A robust DWT based video watermarking algorithm. In: Proc. IEEE Int. Symp. Circuits Systems, May 26-29, 2002, vol. 3, pp. 631–634 (2002)Google Scholar
  19. 19.
    Su, K., Kundur, D., Hatzinakos, D.: A content dependent spatially localized video watermark for resistance to collusion and interpolation attacks. In: Proc. Int. Conf. Image Processing, October 7-10, 2000, vol. 1, pp. 818–821 (2000)Google Scholar
  20. 20.
    Zhao, Y., Lagendijk, R.L.: Video watermarking scheme resistant to geometric attacks. In: Proc. Int. Conf. Image Processing, September 22–25, 2002, vol. 2, pp. 145–148 (2002)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Chong Chen
    • 1
  • Jiangqun Ni
    • 1
  • Jiwu Huang
    • 1
  1. 1.School of Information Science and TechnologySun Yat-Sen UniversityGuangzhouP.R. China

Personalised recommendations