Advertisement

The Power of Preemption on Unrelated Machines and Applications to Scheduling Orders

  • José R. Correa
  • Martin Skutella
  • José Verschae
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5687)

Abstract

Scheduling jobs on unrelated parallel machines so as to minimize the makespan is one of the basic, well-studied problems in the area of machine scheduling. In the first part of the paper we prove that the power of preemption, i.e., the ratio between the makespan of an optimal nonpreemptive and an optimal preemptive schedule, is exactly 4. This result is a definite answer to an important basic open problem in scheduling. The proof of the lower bound is based on a clever iterative construction while the rounding technique we use to prove the upper bound is an adaptation of Shmoys and Tardos’ rounding for the generalized assignment problem. In the second part of the paper we apply this adaptation to the more general setting in which orders, consisting of several jobs, have to be processed on unrelated parallel machines so as to minimize the sum of weighted completion times of the orders. We obtain the first constant factor approximation algorithms for the preemptive and nonpreemptive case, improving and extending a recent result by Leung et. al.

Keywords

Schedule Problem Completion Time Fractional Solution Preemptive Schedule Total Weighted Completion Time 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Afrati, F., Bampis, E., Chekuri, C., Karger, D., Kenyon, C., Khanna, S., Milis, I., Queyranne, M., Skutella, M., Stein, C., Sviridenko, M.: Approximation schemes for minimizing average weighted completion time with release dates. In: Proceedings of the 40th Annual IEEE Symposium on Foundations of Computer Science (FOCS), pp. 32–43 (1999)Google Scholar
  2. 2.
    Ambühl, C., Mastrolilli, M.: Single Machine Precedence Constrained Scheduling is a Vertex Cover Problem. In: Azar, Y., Erlebach, T. (eds.) ESA 2006. LNCS, vol. 4168, pp. 28–39. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  3. 3.
    Ambühl, C., Mastrolilli, M., Svensson, O.: Inapproximability Results for Sparsest Cut, Optimal Linear Arrangement, and Precedence Constrained Scheduling. In: Proceedings of the 48th Annual IEEE Symposium on Foundations of Computer Science (FOCS), pp. 329–337 (2007)Google Scholar
  4. 4.
    Canetti, R., Irani, S.: Bounding the Power of Preemption in Randomized Scheduling. SIAM J. Computing 27, 993–1015 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Chekuri, C., Motwani, R.: Precedence constrained scheduling to minimize sum of weighted completion times on a single machine. Discrete Applied Mathematics 98, 29–38 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Chudak, F., Hochbaum, D.S.: A half-integral linear programming relaxation for scheduling precedence-constrained jobs on a single machine. Oper. Res. Let. 25, 199–204 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Correa, J.R., Schulz, A.S.: Single Machine Scheduling with Precedence Constraints. Math. Oper. Res. 30, 1005–1021 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Dyer, M.E., Wolsey, L.A.: Formulating the single machine sequencing problem with release dates as a mixed integer program. Discrete Applied Mathematics 26, 255–270 (1999)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Graham, R.L.: Bounds for certain multiprocessing anomalies. Bell Systems Technical Journal 45, 1563–1581 (1966)CrossRefGoogle Scholar
  10. 10.
    Hall, L.A., Schulz, A.S., Shmoys, D.B., Wein, J.: Scheduling to minimize average completion time: off-line and on-line approximation algorithms. Math. Oper. Res. 22, 513–544 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Hochbaum, D., Shmoys, D.: Using dual approximation algorithm for scheduling problems: Theoretical and practical results. J. ACM 34, 144–162 (1987)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Hoogeveen, H., Schuurman, P., Woeginger, G.J.: Non-approximability results for scheduling problems with minsum criteria. INFORMS J. Computing 13, 157–168 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Lawler, E.L., Labetoulle, J.: On Preemptive Scheduling of Unrelated Parallel Processors by Linear Programming. J. ACM 25, 612–619 (1978)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Lawler, E.L., Lenstra, J.K., Rinnooy Kan, A.H.G., Shmoys, D.B.: Sequencing and scheduling: Algorithms and complexity. In: Graves, S.C., Rinnooy Kan, A.H.G., Zipkin, P.H. (eds.) Logistics of Production and Inventory, Handbooks in Oper. Res. and Management Science, vol. 4, pp. 445–522. North-Holland, Amsterdam (1993)CrossRefGoogle Scholar
  15. 15.
    Lenstra, J.K., Rinnooy Kan, A.H.G.: Complexity of scheduling under precedence constrains. Operations Research 26, 22–35 (1978)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Lenstra, J.K., Shmoys, D.B., Tardos, E.: Approximation algorithms for scheduling unrelated parallel machines. Mathematical Programming 46, 259–271 (1990)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Leung, J., Li, H., Pinedo, M.: Approximation algorithm for minimizing total weighted completion time of orders on identical parallel machines. Naval Research Logistics 53, 243–260 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Leung, J., Li, H., Pinedo, M., Zhang, J.: Minimizing Total Weighted Completion Time when Scheduling Orders in a Flexible Environment with Uniform Machines. Information Processing Letters 103, 119–129 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Leung, J., Li, H., Pinedo, M.: Scheduling orders for multiple product types to minimize total weighted completion time. Discrete Applied Mathematics 155, 945–970 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Margot, F., Queyranne, M., Wang, Y.: Decompositions, network flows, and a precedence constrained single machine scheduling problem. Operations Research 51, 981–992 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Shachnai, H., Tamir, T.: Multiprocessor Scheduling with Machine Allotment and Parallelism Constraints. Algorithmica 32, 651–678 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Schulz, A., Skutella, M.: Scheduling unrelated machines by randomized rounding. SIAM J. Discrete Math. 15, 450–469 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Shmoys, D.B., Tardos, E.: An approximation algorithm for the generalized assignment problem. Mathematical Programming 62, 561–574 (1993)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Skutella, M., Woeginger, G.J.: Minimizing the total weighted completion time on identical parallel machines. Math. Oper. Res. 25, 63–75 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Skutella, M.: Convex quadratic and semidefinite programming relaxations in scheduling. J. ACM 48, 206–242 (2001)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Smith, W.E.: Various optimizers for single-stage production. Naval Research Logics Quarterly 3, 59–66 (1956)CrossRefGoogle Scholar
  27. 27.
    Verschae, J.: Approximation algorithms for scheduling orders on parallel machines. Mathematical engineering thesis. Universidad de Chile, Santiago, Chile (2008)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • José R. Correa
    • 1
  • Martin Skutella
    • 2
  • José Verschae
    • 2
  1. 1.Departamento de Ingeniería IndustrialUniversidad de ChileSantiagoChile
  2. 2.Institute of MathematicsTU BerlinGermany

Personalised recommendations