Advertisement

Abstract

We give a deterministic combinatorial 7/9-approximation algorithm for the symmetric maximum traveling salesman problem.

Keywords

Approximation Algorithm Travel Salesman Problem Maximum Weight Double Edge Blue Edge 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Barvinok, A., Gimadi, E.K., Serdyukov, A.I.: The maximun traveling salesman problem. In: Gutin, G., Punnen, A. (eds.) The Traveling Salesman Problem and its variations, pp. 585–607. Kluwer, Dordrecht (2002)Google Scholar
  2. 2.
    Bhatia, R.: Private communicationGoogle Scholar
  3. 3.
    Bläser, M., Ram, L.S., Sviridenko, M.: Improved Approximation Algorithms for Metric Maximum ATSP and Maximum 3-Cycle Cover Problems. In: Dehne, F., López-Ortiz, A., Sack, J.-R. (eds.) WADS 2005. LNCS, vol. 3608, pp. 350–359. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  4. 4.
    Chen, Z.-Z., Okamoto, Y., Wang, L.: Improved deterministic approximation algorithms for Max TSP. Information Processing Letters 95, 333–342 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Chen, Z.-Z., Nagoya, T.: Improved approximation algorithms for metric Max TSP. J.Comb. Optim. 13, 321–336 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Engebretsen, L.: An explicit lower bound for TSP with distances one and two. Algorithmica 35(4), 301–319 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Engebretsen, L., Karpinski, M.: Approximation hardness of TSP with bounded metrics. In: Orejas, F., Spirakis, P.G., van Leeuwen, J. (eds.) ICALP 2001. LNCS, vol. 2076, pp. 201–212. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  8. 8.
    Fisher, M.L., Nemhauser, G.L., Wolsey, L.A.: An analysis of approximation for finding a maximum weight Hamiltonian circuit. Oper. Res. 27, 799–809 (1979)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Hassin, R., Rubinstein, S.: Better Approximations for Max TSP. Information Processing Letters 75, 181–186 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Hassin, R., Rubinstein, S.: A 7/8-approximation algorithm for metric Max TSP. Information Processing Letters 81(5), 247–251 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Kaplan, H., Lewenstein, M., Shafrir, N., Sviridenko, M.: Approximation Algorithms for Asymmetric TSP by Decomposing Directed Regualar Multigraphs. J. ACM 52(4), 602–626 (2005)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Kosaraju, S.R., Park, J.K., Stein, C.: Long tours and short superstrings. In: Proc. 35th Annual Symposium on Foundations of Computer Science (FOCS), pp. 166–177 (1994)Google Scholar
  13. 13.
    Kostochka, A.V., Serdyukov, A.I.: Polynomial algorithms with the estimates \(\frac{3}{4}\) and \(\frac{5}{6}\) for the traveling salesman problem of he maximum (in Russian). Upravlyaemye Sistemy 26, 55–59 (1985)MathSciNetGoogle Scholar
  14. 14.
    Kowalik, Ł., Mucha, M.: 35/44-Approximation for Asymmetric Maximum TSP with Triangle Inequality. In: Dehne, F., Sack, J.-R., Zeh, N. (eds.) WADS 2007. LNCS, vol. 4619, pp. 589–600. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  15. 15.
    Kowalik, Ł., Mucha, M.: Deterministic 7/8-approximation for the metric maximum TSP. In: Goel, A., Jansen, K., Rolim, J.D.P., Rubinfeld, R. (eds.) APPROX and RANDOM 2008. LNCS, vol. 5171, pp. 132–145. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  16. 16.
    Papadimitriou, C.H., Yannakakis, M.: The traveling salesman problem with distances one and two. Mathematics of Operations Research 18(1), 1–11 (1993)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Schrijver, A.: Nonbipartite Matching and Covering. In: Combinatorial Optimization, vol. A, pp. 520–561. Springer, Heidelberg (2003)Google Scholar
  18. 18.
    Serdyukov, A.I.: An Algorithm with an Estimate for the Traveling Salesman Problem of Maximum (in Russian). Upravlyaemye Sistemy 25, 80–86 (1984)MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Katarzyna Paluch
    • 1
  • Marcin Mucha
    • 2
  • Aleksander Ma̧dry
    • 3
  1. 1.Institute of Computer ScienceWrocław UniversityPoland
  2. 2.Institute of InformaticsWarsaw UniversityPoland
  3. 3.CSAIL, MITCambridgeUSA

Personalised recommendations