In classical scheduling problems, we are given jobs and machines, and have to schedule all the jobs to minimize some objective function. What if each job has a specified profit, and we are no longer required to process all jobs? Instead, we can schedule any subset of jobs whose total profit is at least a (hard) target profit requirement, while still trying to approximately minimize the objective function.

We refer to this class of problems as scheduling with outliers. This model was initiated by Charikar and Khuller (SODA ’06) for minimum max-response time in broadcast scheduling. In this paper, we consider three other well-studied scheduling objectives: the generalized assignment problem, average weighted completion time, and average flow time, for which LP-based approximation algorithms are provided. Our main results are:

  • For the minimum average flow time problem on identical machines, we give an LP-based logarithmic approximation algorithm for the unit profits case, and complement this result by presenting a matching integrality gap.

  • For the average weighted completion time problem on unrelated machines, we give a constant-factor approximation. The algorithm is based on randomized rounding of the time-indexed LP relaxation strengthened by knapsack-cover inequalities.

  • For the generalized assignment problem with outliers, we outline a simple reduction to GAP without outliers to obtain an algorithm whose makespan is within 3 times the optimum makespan, and whose cost is at most (1 + ε) times the optimal cost.


Completion Time Single Machine Steiner Tree Identical Machine Broadcast Schedule 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Mayr, E.W., Prömel, H.J., Steger, A. (eds.): Dagstuhl Seminar 1997. LNCS, vol. 1367. Springer, Heidelberg (1998)zbMATHGoogle Scholar
  2. 2.
    Bansal, N., Blum, A., Chawla, S., Dhamdhere, K.: Scheduling for flow-time with admission control. In: Di Battista, G., Zwick, U. (eds.) ESA 2003. LNCS, vol. 2832, pp. 43–54. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  3. 3.
    Bartal, Y., Leonardi, S., Marchetti-Spaccamela, A., Sgall, J., Stougie, L.: Multiprocessor scheduling with rejection. In: SODA 1996, pp. 95–103 (1996)Google Scholar
  4. 4.
    Carr, R.D., Fleischer, L., Leung, V.J., Phillips, C.A.: Strengthening integrality gaps for capacitated network design and covering problems. In: SODA 2000, pp. 106–115 (2000)Google Scholar
  5. 5.
    Charikar, M., Khuller, S.: A robust maximum completion time measure for scheduling. In: SODA 2006, pp. 324–333 (2006)Google Scholar
  6. 6.
    Charikar, M., Khuller, S., Mount, D.M., Narasimhan, G.: Algorithms for facility location problems with outliers. In: SODA 2001, pp. 642–651 (2001)Google Scholar
  7. 7.
    Chen, K.: A constant factor approximation algorithm for k-median clustering with outliers. In: SODA 2008, pp. 826–835 (2008)Google Scholar
  8. 8.
    Chudak, F.A., Roughgarden, T., Williamson, D.P.: Approximate k-msts and k-steiner trees via the primal-dual method and lagrangean relaxation. Mathematical Programming 100(2), 411–421 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Engels, D.W., Karger, D.R., Kolliopoulos, S.G., Sengupta, S., Uma, R.N., Wein, J.: Techniques for scheduling with rejection. In: Bilardi, G., Pietracaprina, A., Italiano, G.F., Pucci, G. (eds.) ESA 1998. LNCS, vol. 1461, pp. 175–191. Springer, Heidelberg (1998)Google Scholar
  10. 10.
    Epstein, L., Noga, J., Woeginger, G.J.: On-line scheduling of unit time jobs with rejection: minimizing the total completion time. Operations Research Letters 30(6), 415–420 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Garg, N.: Saving an epsilon: a 2-approximation for the k-MST problem in graphs. In: STOC 2005, pp. 396–402 (2005)Google Scholar
  12. 12.
    Garg, N., Kumar, A.: Better algorithms for minimizing average flow-time on related machines. In: Bugliesi, M., Preneel, B., Sassone, V., Wegener, I. (eds.) ICALP 2006. LNCS, vol. 4051, pp. 181–190. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  13. 13.
    Garg, N., Kumar, A.: Minimizing average flow-time: Upper and lower bounds. In: FOCS 2007, pp. 603–613 (2007)Google Scholar
  14. 14.
    Golovin, D., Nagarajan, V., Singh, M.: Approximating the k-multicut problem. In: SODA 2006, pp. 621–630 (2006)Google Scholar
  15. 15.
    Guha, S., Munagala, K.: Model-driven optimization using adaptive probes. In: SODA 2007, pp. 308–317 (2007)Google Scholar
  16. 16.
    Hall, L.A., Shmoys, D.B., Wein, J.: Scheduling to minimize average completion time: off-line and on-line algorithms. In: SODA 1996, pp. 142–151 (1996)Google Scholar
  17. 17.
    Hoogeveen, H., Skutella, M., Woeginger, G.J.: Preemptive scheduling with rejection. Mathematical Programming, Ser. B 94(2-3), 361–374 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Jain, K., Vazirani, V.V.: Approximation algorithms for metric facility location and k-median problems using the primal-dual schema and Lagrangian relaxation. Journal of the ACM 48(2), 274–296 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Könemann, J., Parekh, O., Segev, D.: A unified approach to approximating partial covering problems. In: Azar, Y., Erlebach, T. (eds.) ESA 2006. LNCS, vol. 4168, pp. 468–479. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  20. 20.
    Lenstra, J.K., Shmoys, D.B., Tardos, É.: Approximation algorithms for scheduling unrelated parallel machines. Mathematical Programming 46, 259–271 (1990)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Leonardi, S., Raz, D.: Approximating total flow time on parallel machines. In: STOC 1997, pp. 110–119 (1997)Google Scholar
  22. 22.
    Levin, A., Segev, D.: Partial multicuts in trees. Theoretical Computer Science 369(1-3), 384–395 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Mestre, J.: A primal-dual approximation algorithm for partial vertex cover: making educated guesses. In: Chekuri, C., Jansen, K., Rolim, J.D.P., Trevisan, L. (eds.) APPROX 2005 and RANDOM 2005. LNCS, vol. 3624, pp. 182–191. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  24. 24.
    Mestre, J.: Lagrangian relaxation and partial cover (extended abstract). In: STACS 2008, pp. 539–550 (2008)Google Scholar
  25. 25.
    Schulz, A.S., Skutella, M.: Scheduling unrelated machines by randomized rounding. SIAM Journal on Discrete Mathematics 15(4), 450–469 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Seiden, S.S.: Preemptive multiprocessor scheduling with rejection. Theoretical Computer Science 262(1), 437–458 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Shmoys, D.B., Tardos, É.: An approximation algorithm for the generalized assignment problem. Mathematical Programming 62, 461–474 (1993)MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Skutella, M.: Convex quadratic and semidefinite programming relaxations in scheduling. Journal of the ACM 48(2), 206–242 (2001)MathSciNetCrossRefGoogle Scholar
  29. 29.
    Wolsey, L.A.: Faces for a linear inequality in 0-1 variables. Mathematical Programming 8, 165–178 (1975)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Anupam Gupta
    • 1
  • Ravishankar Krishnaswamy
    • 1
  • Amit Kumar
    • 2
  • Danny Segev
    • 3
  1. 1.Department of Computer ScienceCarnegie Mellon UniversityUSA
  2. 2.Department of Computer Science and EngineeringIndian Institute of TechnologyNew DelhiIndia
  3. 3.Sloan School of ManagementMassachusetts Institute of TechnologyUSA

Personalised recommendations