We obtain a polynomial time approximation scheme for the terrain guarding problem improving upon several recent constant factor approximations. Our algorithm is a local search algorithm inspired by the recent results of Chan and Har-Peled [2] and Mustafa and Ray [15]. Our key contribution is to show the existence of a planar graph that appropriately relates the local and global optimum.


Local Search Planar Graph Local Search Algorithm Simple Polygon Blue Point 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ben-Moshe, B., Katz, M.J., Mitchell, J.S.B.: A constant-factor approximation algorithm for optimal terrain guarding. In: SODA, pp. 515–524 (2005)Google Scholar
  2. 2.
    Chan, T., Har-Peled, S.: Approximation algorithms for maximum independent set of pseudo-disks. In: Symposium on Computational Geometry (to appear, 2009)Google Scholar
  3. 3.
    Chen, D.Z., Estivill-Castro, V., Urrutia, J.: Optimal guarding of polygons and monotone chains (extended abstract) (1996)Google Scholar
  4. 4.
    Clarkson, K.L., Varadarajan, K.: Improved approximation algorithms for geometric set cover. In: SCG 2005: Proceedings of the twenty-first annual symposium on Computational geometry, pp. 135–141. ACM Press, New York (2005)CrossRefGoogle Scholar
  5. 5.
    Deshpande, A., Kim, T., Demaine, E.D., Sarma, S.E.: A pseudopolynomial time o(log2 n)-approximation algorithm for art gallery problems. In: Dehne, F., Sack, J.-R., Zeh, N. (eds.) WADS 2007. LNCS, vol. 4619, pp. 163–174. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  6. 6.
    Efrat, A., Har-Peled, S.: Guarding galleries and terrains. Information Processing Letters 100(6), 238–245 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Eidenbenz, S.: Inapproximability results for guarding polygons without holes. LNCS, pp. 427–436. Springer, Heidelberg (1998)Google Scholar
  8. 8.
    Elbassioni, K., Krohn, E., Matijevic, D., Mestre, J., Severdija, D.: Improved approximations for guarding 1.5-dimensional terrains. In: Albers, S., Marion, J.-Y. (eds.) 26th International Symposium on Theoretical Aspects of Computer Science (STACS 2009), Dagstuhl, Germany, Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, Germany (2009)Google Scholar
  9. 9.
    Erlebach, T., Jansen, K., Seidel, E.: Polynomial-time approximation schemes for geometric intersection graphs. SIAM Journal on Computing 34(6), 1302–1323 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Frederickson, G.N.: Fast algorithms for shortest paths in planar graphs, with applications. SIAM J. Comput. 16(6), 1004–1022 (1987)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Ghosh, S.: Approximation algorithms for art gallery problems. In: Proc. Canadian Information Processing Society Congress (1987)Google Scholar
  12. 12.
    King, J.: A 4-approximation algorithm for guarding 1.5-dimensional terrains. In: Correa, J.R., Hevia, A., Kiwi, M. (eds.) LATIN 2006. LNCS, vol. 3887, pp. 629–640. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  13. 13.
    Krohn, E., King, J.: The complexity of guarding terrains (manuscript, 2009)Google Scholar
  14. 14.
    Lee, D., Lin, A.: Computational complexity of art gallery problems. IEEE Transactions on Information Theory 32(2), 276–282 (1986)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Mustafa, N.H., Ray, S.: Ptas for geometric hitting set problems via local search. In: Symposium on Computational Geometry (to Appear, 2009)Google Scholar
  16. 16.
    Nilsson, B.J.: Approximate guarding of monotone and rectilinear polygons. In: Caires, L., Italiano, G.F., Monteiro, L., Palamidessi, C., Yung, M. (eds.) ICALP 2005. LNCS, vol. 3580, pp. 1362–1373. Springer, Heidelberg (2005)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Matt Gibson
    • 1
  • Gaurav Kanade
    • 1
  • Erik Krohn
    • 1
  • Kasturi Varadarajan
    • 1
  1. 1.Department of Computer ScienceUniversity of IowaIowa CityUSA

Personalised recommendations