Skip to main content

Numerical Solving Method for the Structural Stiffness of Gas Foil Bearings

  • Conference paper
  • 298 Accesses

Abstract

In order to analyze the performance of Gas Foil Bearings, a coupled finite element method (FEM) is developed in this paper. The compressible gas lubricated Reynolds equation is transformed into a typical elliptic partial differential equation and solved by FEM. The elastic deformation equation and the contact boundary conditions between foils are solved by nonlinear contact finite method. A generalized numerical solving method for the elasto-aerodynamically coupled lubrication problem in the foil bearing is given with mesh mapping relationship between the two kind of finite element solving process above mentioned. The structural stiffness of the foil bearings with different parameters is estimated by using the numerical method. It is helpful to decide the structural parameters of the foil bearing.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   429.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Radil, K., Howard, S., Dykas, B., The role of radial clearance on the performance of foil air bearings, Tribology Transactions, 2002, 45(4): 485–490.

    Article  Google Scholar 

  2. Dellacorte, C., Valco, M. J., Load capacity estimation of foil air journal bearings for oil-free turbomachinery applications, Tribology Transactions, 2000, 43(4): 795–801.

    Article  Google Scholar 

  3. Howard, S. A., Dellacorte, C., Valco, M. J. et al., Steady-state stiffness of foil air journal bearings at elevated temperatures, Tribology Transactions, 2001, 44(3): 489–493.

    Article  Google Scholar 

  4. Ku, C.-P. R., Heshmat, H., Compliant foil bearing structural stiffness analysis: part I — theoretical model including strip and variable bump foil geometry, Journal of Tribology, Transactions of the ASME, 1992, 114(2): 394–400.

    Article  Google Scholar 

  5. Ku, C.-P. R., Heshmat, H., Structural stiffness and coulomb damping in compliant foil journal bearings: theoretical considerations, Tribology Transactions, 1994, 37(3): 525–533.

    Article  Google Scholar 

  6. Heshmat, H., Ku, C.-P. R., Structural damping of self-acting compliant foil journal bearings, Journal of Tribology, Transactions of the ASME, 1994, 116(1): 76–82.

    Article  Google Scholar 

  7. Walowit, J., Gas lubricated foil bearing technology development for propulsion and power system, Technical report, Air Force Aero Propulsion Laboratory, 1973.

    Google Scholar 

  8. J.A. Walowit, J.N. Arno. Modern Development in Lubrication Mechanics, Applied Science Publishers, Ltd, London, 1975.

    Google Scholar 

  9. Heshmat, H., J.A. Walowit, O. Pinkus. Analysis of gas-lubricated foil journal bearings, Journal of Lubrication Technology, Transactions of the ASME, 1983 105(10): 647–655.

    Article  Google Scholar 

  10. Heshmat, H., J.A. Walowit, O. Pinkus. Analysis of gas-lubricated compliant thrust bearings, Journal of Lubrication Technology, Transactions of the ASME, 1983 105(10): 638–646.

    Article  Google Scholar 

  11. Ku, C.-P. R., Heshmat, H., Structural stiffness and coulomb damping in compliant foil journal bearings: parametric studies, Tribology Transaction, 1994, 37(3): 455–462.

    Article  Google Scholar 

  12. Salehi, M., Swanson, E.E. and Heshmat, H. Thermal Features of Compliant Foil Bearings — Theory and Experiments, Journal of Tribology, Transactions of the ASME, Volume (2001), 123 (3): 566–571.

    Article  Google Scholar 

  13. Foil Gas Bearing With Compression Springs: Analyses and Experiments, Journal of Tribology, Transactions of the ASME, 2007, 129(3):628–639.

    Google Scholar 

  14. K P Oh, S M Rohde. A Theoretical investigation of the Multileaf Journal Bearing. Journal of Applied Mechanics. 1976 (6):237–242.

    Google Scholar 

  15. D Sudheer Kumar Reddy, S. Swarnamani. Analysis of aerodynamic multileaf foil journal bearing. Wear, 1997, (209): 115–22.

    Article  Google Scholar 

  16. C A Heshmat, H Heshmat. An Analysis of Gas Lubricated Multileaf Foil Bearings with Backing Springs[J]. ASME, Journal of Tribology, 1995, 117(7):437–443.

    Article  Google Scholar 

  17. Luis San Andres. Gas bearing will soon be widely used. Turbomachinary International. 2004 (5):35.

    MathSciNet  Google Scholar 

  18. Yu Lie, Qi Shemiao, Geng Haipeng. A generalized solution of elasto-aerodynamic lubrication for aerodynamic compliant foil bearings. Science in China Ser. E Engineering and Materials Science 2005, 48(4):441–449.

    Google Scholar 

  19. Geng Haipeng Yu Lie, Qi Shemiao. Software Framework for Solving of the Elastohydrodynamic Lubrication Problem. Ruhua yu mifeng, 2006 (2):42–45.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Tsinghua University Press, Beijing and Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Haipeng, G., Shemiao, Q., Lie, Y. (2009). Numerical Solving Method for the Structural Stiffness of Gas Foil Bearings. In: Luo, J., Meng, Y., Shao, T., Zhao, Q. (eds) Advanced Tribology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-03653-8_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-03653-8_27

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-03652-1

  • Online ISBN: 978-3-642-03653-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics