Skip to main content

Thermal Cycloadditions

  • Chapter
Organic Mechanisms

Abstract

We dealt with [4+2]-cycloadditions very briefly in Section 3.3.1. As you saw there, a [4+2]-cycloaddition requires two different substrates: one of these is an alkene—or an alkyne—and the other is 1,3-butadiene or a derivative thereof. The reaction product, in this context also called the cycloadduct, is a six-membered ring with one or two double bonds. Some hetero analogs of alkenes, alkynes, and 1,3-butadiene also undergo analogous [4+2]-cycloadditions. In a [2+2]-cycloaddition an alkene or an alkyne reacts with ethene or an ethene derivative to form a four-membered ring. Again, hetero analogs may be substrates in these cycloadditions; allenes and some heterocumulenes also are suitable substrates.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • W. Carruthers, “Cycloaddition Reactions in Organic Synthesis,” Pergamon, Elmsford, NY, 1990.

    Google Scholar 

  • H. McNab, “One or More C-C Bond(s) by Pericyclic Processes,” in Comprehensive Organic Functional Group Transformations (A. R. Katritzky, O. Meth-Cohn, C. W. Rees, Eds.), Vol. 1, 771, Elsevier Science, Oxford, U. K., 1995.

    Google Scholar 

15.1

  • F. Bernardi, M. Olivucci, M. A. Robb, “Predicting Forbidden and Allowed Cycloaddition Reactions: Potential Surface Topology and Its Rationalization,” Acc. Chem. Res. 1990, 23, 405.

    Article  CAS  Google Scholar 

15.2

  • K. Fukui, “The Role of Frontier Orbitals in Chemical Reactions (Nobel Lecture),” Angew. Chem. Int. Ed. Engl. 1982, 21, 801–809.

    Article  Google Scholar 

  • R. Huisgen, “Cycloadditions — Definition, Classification, and Characterization,” Angew. Chem. Int. Ed. Engl. 1968, 7, 321–328.

    Article  CAS  Google Scholar 

  • K. N. Houk, J. Gonzalez, Y. Li, “Pericyclic Reaction Transition States: Passions and Punctilios, 1935–1995,” Acc. Chem. Res. 1995, 28, 81–90.

    Article  CAS  Google Scholar 

  • O. Wiest, K. N. Houk, “Density-Functional Theory Calculations of Pericyclic Reaction Transition Structures,” Top. Curr. Chem. 1996, 183, 1–24.

    CAS  Google Scholar 

  • K. N. Houk, Y. Li, J. D. Evanseck, “Transition Structures of Hydrocarbon Pericyclic Reactions,” Angew. Chem. Int. Ed. Engl. 1992, 31, 682–708.

    Article  Google Scholar 

15.3

  • H. L. Holmes, “The Diels-Alder Reaction: Ethylenic and Acetylenic Dienophiles,” Org. React. 1948, 4, 60–173.

    CAS  Google Scholar 

  • M. C. Kloetzel, “The Diels-Alder Reaction with Maleic Anhydride,” Org. React. 1948, 4, 1–59.

    CAS  Google Scholar 

  • L. L. Butz, A. W. Rytina, “The Diels-Alder Reaction: Quinones and Other Cyclenones,” Org. React. 1949, 5, 136–192.

    CAS  Google Scholar 

  • J. Sauer, R. Sustmann, “Mechanistic Aspects of Diels-Alder Reactions: A Critical Survey,” Angew. Chem. Int. Ed. Engl. 1980, 19, 779–807.

    Article  Google Scholar 

  • J. Jurczak, T. Bauer, C. Chapuis, “Intermolecular [4+2] Cycloadditions,” in Stereoselective Synthesis (Houben-Weyl) 4th ed., 1996, (G. Helmchen, R. W. Hoffmann, J. Mulzer, E. Schaumann, Eds.), 1996, Vol. E21 (Workbench Edition), 5, 2735–2871, Georg Thieme Verlag, Stuttgart.

    Google Scholar 

  • F. Fringuelli, A. Taticchi, “Dienes in the Diels-Alder Reaction,” Wiley, New York, 1990.

    Google Scholar 

  • V. D. Kiselev, A. I. Konovalov, “Factors that Determine the Reactivity of Reactants in the Normal and Catalyzed Diels-Alder Reaction,” Russ. Chem. Rev. (Engl. Transl.) 1989, 58, 230.

    Article  Google Scholar 

  • W. Oppolzer, “Intermolecular Diels-Alder Reactions,” in Comprehensive Organic Synthesis (B. M. Trost, I. Fleming, Eds.), Vol. 5, 315, Pergamon Press, Oxford, U. K., 1991.

    Google Scholar 

  • F. Fringuelli, A. Taticchi, E. Wenkert, “Diels-Alder Reactions of Cycloalkenones in Organic Synthesis. A Review;” Org. Prep. Proced. Int. 1990, 22, 131–165.

    Article  CAS  Google Scholar 

  • F. Fringuelli, L. Minuti, F. Pizzo, A. Taticchi, “Reactivity and Selectivity in Lewis Acid-Catalyzed Diels-Alder Reactions of 2-Cyclohexenones,” Acta Chem. Scand. 1993, 47, 255–263.

    Article  CAS  Google Scholar 

  • E. Ciganek, “The Intramolecular Diels-Alder Reaction,” Org. React. 1984, 32, 1–374.

    CAS  Google Scholar 

  • W. R. Roush, “Stereochemical and Synthetic Studies of the Intramolecular Diels-Alder Reaction,” in Advances in Cycloaddition (D. P. Curran, Ed.) 1990, 2, Jai Press, Greenwich, CT.

    Google Scholar 

  • D. Craig, “Intramolecular [4+2] Cycloadditions,” in Stereoselective Synthesis (Houben-Weyl) 4th ed., 1996, (G. Helmchen, R. W. Hoffmann, J. Mulzer, E. Schaumann, Eds.), 1996, Vol. E21 (Workbench Edition), 5, 2872–2952, Georg Thieme Verlag, Stuttgart.

    Google Scholar 

  • A. G. Fallis, “Harvesting Diels and Alder’s Garden: Synthetic Investigations of Intramolecular [4 + 2] Cycloadditions,” Acc. Chem. Res. 1999, 32, 464–474.

    Article  CAS  Google Scholar 

  • J. M. Coxon, R. D. J. Froese, B. Ganguly, A. P. Marchand, K. Morokuma, “On the Origins of Diastereofacial Selectivity in Diels-Alder Cycloadditions,” Synlett 1999, 1681–1703.

    Google Scholar 

  • J. I. Garcia, J. A. Mayoral, L. Salvatella, “Do Secondary Orbital Interactions Really Exist?”, Acc. Chem. Res. 2000, 33, 658–664.

    Article  CAS  Google Scholar 

15.4

  • W. E. Hanford, J. C Sauer, “Preparation of Ketenes and Ketene Dimers,” Org. React. 1946, 3, 108–140.

    Google Scholar 

  • S. Patai (Ed.), “The Chemistry of Ketenes, Allenes, and Related Compounds,” Wiley, New York, 1980.

    Google Scholar 

  • W. T. Brady, “Synthetic Applications Involving Halogenated Ketenes,” Tetrahedron 1981, 37, 2949.

    Article  CAS  Google Scholar 

  • P. W. Raynolds, “Ketene,” in Acetic Acid and Its Derivatives (V. H. Agreda, J. R. Zoeller, Eds.), 161, Marcel Dekker, New York, 1993.

    Google Scholar 

  • E. Lee-Ruff, “New Synthetic Pathways from Cyclobutanones,” in Advances in Strain in Organic Chemistry (B. Halton, Ed.) 1991, 1, Jai Press, Greenwich, CT.

    Google Scholar 

  • J. A. Hyatt, P. W. Raynolds, “Ketene Cycloadditions,” Org. React. 1994, 45, 159–646.

    CAS  Google Scholar 

15.5

  • A. Padwa (Ed.), “1,3-Dipolar Cycloaddition Chemistry,” Wiley, 1984.

    Google Scholar 

  • R. Huisgen, “Steric Course and Mechanism of 1,3-Dipolar Cycloadditions,” in Advances in Cycloaddition (D. P. Curran, Ed.) 1988, 1, 11–31, Jai Press, Greenwich, CT.

    Google Scholar 

  • R. Sustmann, “Rolf Huisgen’s Contribution to Organic Chemistry, Emphasizing 1,3-Dipolar Cycloadditions,” Heterocycles 1995, 40, 1–18.

    Article  CAS  Google Scholar 

  • A. Padwa, “Intermolecular 1,3-Dipolar Cycloadditions,” in Comprehensive Organic Synthesis (B. M. Trost, I. Fleming, Eds.), Vol. 4, 1069, Pergamon Press, Oxford, U. K., 1991.

    Google Scholar 

  • M. Cinquini, F. Cozzi, “1,3-Dipolar Cycloadditions,” in Stereoselective Synthesis (Houben-Weyl) 4th ed., 1996, (G. Helmchen, R. W. Hoffmann, J. Mulzer, E. Schaumann, Eds.), 1996, Vol. E21 (Workbench Edition), 5, 2953–2987, Georg Thieme Verlag, Stuttgart.

    Google Scholar 

  • A. Padwa, A. M. Schoffstall, “Intramolecular 1,3-Dipolar Cycloaddition Chemistry,” in Advances in Cycloaddition (D. P. Curran, Ed.), Vol. 2, 1, JAI Press, Greenwich, CT, 1990.

    Google Scholar 

  • P. A. Wade, “Intramolecular 1,3-Dipolar Cycloadditions,” in Comprehensive Organic Synthesis (B. M. Trost, I. Fleming, Eds.), Vol. 4, 1111, Pergamon Press, Oxford, U. K., 1991.

    Google Scholar 

  • T. H. Black, “The Preparation and Reactions of Diazomethane,” Aldrichimica Acta 1983, 16, 3.

    CAS  Google Scholar 

  • V. Dave, E. W. Warnhoff, “The Reactions of Diazoacetic Esters with Alkenes, Alkynes, Heterocyclic, and Aromatic Compounds,” Org. React. 1970, 18, 217–402.

    CAS  Google Scholar 

  • K. B. G. Torsell, “Nitrile Oxides, Nitrones and Nitronates in Organic Synthesis. Novel Strategies in Synthesis,” VCH Verlagsgesellschaft, Weinheim, 1988.

    Google Scholar 

  • S. Kanemasa, O. Tsuge, “Recent Advances in Synthetic Applications of Nitrile Oxide Cycloaddition (1981–1989),” Heterocycles 1990, 30, 719–736.

    Article  CAS  Google Scholar 

  • D. P. Curran, “The Cycloaddition Approach to α-Hydroxy Carbonyls: An Emerging Alternative to the Aldol Strategy,” in Advances in Cycloaddition (D. P. Curran, Ed.) 1988, 1, 129–189, Jai Press, Greenwich, CT.

    Google Scholar 

  • R. P. Litvinovskaya, V. A. Khripach, “Regio-and Stereochemistry of 1,3-Dipolar Cycloaddition of Nitrile Oxides to Alkenes,” Russ. Chem. Rev. 2001, 70, 464–485.

    Article  Google Scholar 

  • R. L. Kuczkowski, “Formation and Structure of Ozonides,” Acc. Chem. Res. 1983, 16, 42.

    Article  CAS  Google Scholar 

  • R. L. Kuczkowski, “The Structure and Mechanism of Formation of Ozonides,” Chem. Soc. Rev. 1992, 21, 79–83.

    Article  CAS  Google Scholar 

  • O. Horie, G. K. Moortgat, “Gas-Phase Ozonolysis of Alkenes. Recent Advances in Mechanistic Investigations,” Acc. Chem. Res. 1998, 31, 387–396.

    Article  CAS  Google Scholar 

  • W. Sander, “Carbonyl Oxides: Zwitterions or Diradicals?”, Angew. Chem. Int. Ed. Engl. 1990, 29, 344–354.

    Article  Google Scholar 

  • W. H. Bunnelle, “Preparation, Properties, and Reactions of Carbonyl Oxides,” Chem. Rev. 1991, 91, 335–362.

    Article  CAS  Google Scholar 

  • K. Ishiguro, T. Nodima, Y. Sawaki, “Novel Aspects of Carbonyl Oxide Chemistry,” J. Phys. Org. Chem. 1997, 10, 787–796.

    Article  CAS  Google Scholar 

Further Reading

  • S. Danishefsky, “Cycloaddition and Cyclocondensation Reactions of Highly Functionalized Dienes: Applications to Organic Synthesis,” Chemtracts: Org. Chem. 1989, 2, 273–297.

    CAS  Google Scholar 

  • T. Kametani, S. Hibino, “The Synthesis of Natural Heterocyclic Products by Hetero Diels-Alder Cycloaddition Reactions,” Adv. Heterocycl. Chem. 1987, 42, 246.

    Google Scholar 

  • J. A. Coxon, D. Q. McDonald, P. J. Steel, “Diastereofacial Selectivity in the Diels-Alder Reaction,” in Advances in Detailed Reaction Mechanisms (J. M. Coxon, Ed.), Vol. 3, Jai Press, Greenwich, CT, 1994.

    Google Scholar 

  • J. D. Winkler, “Tandem Diels-Alder Cycloadditions in Organic Synthesis,” Chem. Rev. 1996, 96, 167–176.

    Article  CAS  Google Scholar 

  • C. O. Kappe, S. S. Murphree, A. Padwa, “Synthetic Applications of Furan Diels-Alder Chemistry,” Tetrahedron 1997, 53 14179–14231.

    Article  CAS  Google Scholar 

  • D. Craig, “Stereochemical Aspects of the Intramolecular Diels-Alder Reaction,” Chem. Soc. Rev. 1987, 16, 187.

    Article  CAS  Google Scholar 

  • G. Helmchen, R. Karge, J. Weetman, “Asymmetric Diels-Alder Reactions with Chiral Enoates as Dienophiles,” in Modern Synthetic Methods (R. Scheffold, Ed.), Vol. 4, 262, Springer, Berlin, 1986.

    Google Scholar 

  • L. F. Tietze, G. Kettschau, “Hetero Diels-Alder Reactions in Organic Chemistry,” Top. Curr. Chem. 1997, 189, 1–120.

    Article  CAS  Google Scholar 

  • K. Neuschuetz, J. Velker, R. Neier, “Tandem Reactions Combining Diels-Alder Reactions with Sigmatropic Rearrangement Processes and Their Use in Synthesis,” Synthesis 1998, 227–255.

    Google Scholar 

  • D. L. Boger, M. Patel, “Recent Applications of the Inverse Electron Demand Diels-Alder Reaction,” in Progress in Heterocyclic Chemistry (H. Suschitzky, E. F. V. Scriven, Eds.) 1989, 1, 36–67, Pergamon Press, Oxford, U. K.

    Google Scholar 

  • M. J. Tashner, “Asymmetric Diels-Alder Reactions,” in Organic Synthesis: Theory and Applications (T. Hudlicky, Ed.) 1989, 1, Jai Press, Greenwich, CT.

    Google Scholar 

  • H. B. Kagan, O. Riant, “Catalytic Asymmetric Diels-Alder Reactions,” Chem. Rev. 1992, 92, 1007.

    Article  CAS  Google Scholar 

  • T. Oh, M. Reilly, “Reagent-Controlled Asymmetric Diels-Alder Reactions,” Org. Prep. Proced. Int. 1994, 26, 129.

    Article  CAS  Google Scholar 

  • I. E. Marko, G. R. Evans, P. Seres, I. Chelle, Z. Janousek, “Catalytic, Enantioselective, Inverse Eectron-Demand Diels-Alder Reactions of 2-Pyrone Derivatives,” Pure Appl. Chem. 1996, 68, 113.

    Article  CAS  Google Scholar 

  • H. Waldmann, “Asymmetric Hetero-Diels-Alder Reactions,” Synthesis 1994, 635–651.

    Google Scholar 

  • H. Waldmann, “Asymmetric Aza-Diels-Alder Reactions,” in Organic Synthesis Highlights II (H. Waldmann, Ed.), VCH, Weinheim, New York, 1995, 37–47.

    Chapter  Google Scholar 

  • L. C. Dias, “Chiral Lewis Acid Catalysts in Diels Alder Cycloadditions: Mechanistic Aspects and Synthetic Applications of Recent Systems,” J. Braz. Chem. Soc. 1997, 8, 289–332.

    CAS  Google Scholar 

  • D. Carmona, M. Pilar Lamata, L. A. Oro, “Recent Advances in Homogeneous Enantioselective Diels-Alder Reactions Catalyzed by Chiral Transition-Metal Complexes,” Coord. Chem. Rev. 2000, 200–2, 717–772.

    Article  Google Scholar 

  • F. Fringuelli, O. Piermatti, F. Pizzo, L. Vaccaro, “Recent Advances in Lewis Acid Catalyzed Diels-Alder Reactions in Aqueous Media,” Eur. J. Org. Chem. 2001, 3, 439–455.

    Article  Google Scholar 

  • B. R. Bear, S. M. Sparks, K. J. Shea, “The Type 2 Intramolecular Diels-Alder Reaction: Synthesis and Chemistry of Bridgehead Alkenes,” Angew. Chem. Int. Ed. Engl. 2001, 40, 820–849.

    Article  CAS  Google Scholar 

  • E. J. Corey, “Catalytic Enantioselective Diels-Alder Reaction: Methods, Mechanistic Basis, Reaction Pathways, and Applications,” Angew. Chem. Int. Ed. Engl. 2002, 41, 1650–1667.

    Article  CAS  Google Scholar 

  • K. C. Nicolaou, S. A. Snyder, T. Montagnon, G. E. Vassilikogiannakis, “The Diels-Alder Reaction in Total Synthesis,” Angew. Chem. Int. Ed. Engl. 2002, 41, 1668–1698.

    Article  CAS  Google Scholar 

  • J. D. Roberts, C. M. Sharts, “Cyclobutane Derivatives from Thermal Cycloaddition Reactions”, Org. React. 1962, 12, 1–56.

    CAS  Google Scholar 

  • B. B. Snider, “Thermal [2+2] Cycloadditions,” in Stereoselective Synthesis (Houben-Weyl) 4th ed., 1996, (G. Helmchen, R. W. Hoffmann, J. Mulzer, E. Schaumann, Eds.), 1996, Vol. E21 (Workbench Edition), 5, 3060–3084, Georg Thieme Verlag, Stuttgart.

    Google Scholar 

  • J. Mulzer, “Natural Product Synthesis via 1,3-Dipolar Cycloadditions,” in Organic Synthesis Highlights (J. Mulzer, H.-J. Altenbach, M. Braun, K. Krohn, H.-U. Reißig, Eds.), VCH, Weinheim, New York, 1991, 77–95.

    Google Scholar 

  • K. V. Gothelf, K. A. Jürgensen, “Metal-Catalyzed Asymmetric 1,3-Dipolar Cycloaddition Reactions,” Acta Chem. Scand. 1996, 50, 652.

    Article  CAS  Google Scholar 

  • P. N. Confalone, E. M. Huie, “The [3+2] Nitrone-Olefin Cycloaddition Reaction,” Org. React. 1988, 36, 1–173.

    CAS  Google Scholar 

Download references

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

(2010). Thermal Cycloadditions. In: Harmata, M. (eds) Organic Mechanisms. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-03651-4_15

Download citation

Publish with us

Policies and ethics