Skip to main content

Chemistry of the Alkaline Earth Metal Enolates

  • Chapter
Book cover Organic Mechanisms
  • 6348 Accesses

Abstract

Aldehydes, ketones, carboxylic esters, carboxylic amides, imines and N,N-disubstituted hydrazones react as electrophiles at their sp 2-hybridized carbon atoms. These compounds also become nucleophiles, if they contain an H atom in the α-position relative to their C=O or C=N bonds. This is because they can undergo tautomerization to the corresponding enol as seen in Chapter 12. They are also C,H-acidic at this position, i.e., the H atom in the α-position can be removed with a base (Figure 13.1). The deprotonation forms the conjugate bases of these substrates, which are called enolates. The conjugate bases of imines and hydrazones are called aza enolates. The reactions discussed in this chapter all proceed via enolates.

Formation of enolates from different C,H acids.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

13.1

  • D. Seebach, “Structure and Reactivity of Lithium Enolates. From Pinacolone to Selective C-Alkylations of Peptides. Difficulties and Opportunities Afforded by Complex Structures,” Angew. Chem. Int. Ed. Engl. 1988, 27, 1624–1654.

    Article  Google Scholar 

  • L. M. Jackman, J. Bortiatynski, “Structures of Lithium Enolates and Phenolates in Solution,” in Advances in Carbanion Chemistry (V. Snieckus, Ed.), Vol. 1, 45, Jai Press Inc, Greenwich, 1992.

    Google Scholar 

  • G. Boche, “The Structure of Lithium Compounds of Sulfones, Sulfoximides, Sulfoxides, Thioethers and 1,3-Dithianes, Nitriles, Nitro Compounds and Hydrazones,” Angew. Chem. Int. Ed. Engl. 1989, 28, 277–297.

    Article  Google Scholar 

  • R. Schwesinger, “Starke ungeladene Stickstoff-Basen,” Nachr. Chem. Techn. Lab. 1990, 38, 1214–1226.

    CAS  Google Scholar 

  • H. B. Mekelburger, C. S. Wilcox, “Formation of Enolates,” in Comprehensive Organic Synthesis (B. M. Trost, I. Fleming, Eds.), Vol. 2, 99, Pergamon Press, Oxford, U. K., 1991.

    Google Scholar 

  • C. H. Heathcock, “Modern Enolate Chemistry: Regio-and Stereoselective Formation of Enolates and the Consequence of Enolate Configuration on Subsequent Reactions,” in Modern Synthetic Methods (R. Scheffold, Ed.), Vol. 6, 1, Verlag Helvetica Chimica Acta, Basel, Switzerland, 1992.

    Google Scholar 

  • I. Kuwajima, E. Nakamura, “Reactive Enolates from Enol Silyl Ethers”, Acc. Chem. Res. 1985, 18, 181.

    Article  CAS  Google Scholar 

  • D. Cahard, P. Duhamel, “Alkoxide-Mediated Preparation of Enolates from Silyl Enol Ethers and Enol Acetates — From Discovery to Synthetic Applications,” Eur. J. Org. Chem. 2001, 1023–1031.

    Google Scholar 

13.2

  • A. C. Cope, H. L. Holmes, H. O. House, “The Alkylation of Esters and Nitriles,” Org. React. 1957, 9, 107–331.

    Google Scholar 

  • G. Frater, “Alkylation of Ester Enolates”, in Stereoselective Synthesis (Houben-Weyl) 4th ed. 1996, (G. Helmchen, R. W. Hoffmann, J. Mulzer, E. Schaumann, Eds.), 1996, Vol. E21 (Workbench Edition), 2, 723–790, Georg Thieme Verlag, Stuttgart.

    Google Scholar 

  • H.-E. Högberg, “Alkylation of Amide Enolates”, in Stereoselective Synthesis (Houben-Weyl) 4th ed. 1996, (G. Helmchen, R. W. Hoffmann, J. Mulzer, E. Schaumann, Eds.), 1996, Vol. E21 (Workbench Edition), 2, 791–915, Georg Thieme Verlag, Stuttgart.

    Google Scholar 

  • D. Caine, “Alkylations of Enols and Enolates,” in Comprehensive Organic Synthesis (B. M. Trost, I. Fleming, Eds.), Vol. 3, 1, Pergamon Press, Oxford, 1991.

    Google Scholar 

  • T. Norin, “Alkylation of Ketone Enolates,” in Stereoselective Synthesis (Houben-Weyl) 4th ed. 1996, (G. Helmchen, R. W. Hoffmann, J. Mulzer, E. Schaumann, Eds.), 1996, Vol. E 21 (Workbench Edition), 2, 697–722, Georg Thieme Verlag, Stuttgart.

    Google Scholar 

  • P. Fey, “Alkylation of Azaenolates from Imines,” in Stereoselective Synthesis (Houben-Weyl) 4th ed. 1996, (G. Helmchen, R. W. Hoffmann, J. Mulzer, E. Schaumann, Eds.), 1996, Vol. E 21 (Workbench Edition), 2, 973–993, Georg Thieme Verlag, Stuttgart.

    Google Scholar 

  • P. Fey, “Alkylation of Azaenolates from Hydrazones,” in Stereoselective Synthesis (Houben-Weyl) 4th ed. 1996, (G. Helmchen, R. W. Hoffmann, J. Mulzer, E. Schaumann, Eds.), 1996, Vol. E 21 (Workbench Edition), 2, 994–1015, Georg Thieme Verlag, Stuttgart.

    Google Scholar 

  • N. Petragnani, M. Yonashiro, “The Reactions of Dianions of Carboxylic Acids and Ester Enolates”, Synthesis 1982, 521.

    Google Scholar 

  • S. Gil, M. Parra, “Dienediolates of Carboxylic Acids in Synthesis. Recent Advances,” Curr. Org. Chem. 2002, 6, 283–302.

    Article  CAS  Google Scholar 

  • D. A. Evans, “Studies in Asymmetric Synthesis — The Development of Practical Chiral Enolate Synthons”, Aldrichimica Acta 1982, 15, 23.

    CAS  Google Scholar 

  • D. A. Evans, “Stereoselective Alkylation Reactions of Chiral Metal Enolates,” in Asymmetric Synthesis — Stereodifferentiating Reactions, Part B (J. D. Morrison, Ed.), Vol. 3, 1, AP, New York, 1984.

    Google Scholar 

  • C. Spino, “Chiral Enolate Equivalents. A Review”, Org. Prep. Proced. Int. 2003, 35, 1–140.

    Article  CAS  Google Scholar 

  • D. Enders, L. Wortmann, R. Peters, “Recovery of Carbonyl Compounds from N,N-Dialkylhydrazones,” Acc. Chem. Res. 2000, 33, 157–169.

    Article  CAS  Google Scholar 

  • A. Job, C. F. Janeck, W. Bettray, R. Peters, D. Enders, “The SAMP/RAMP-Hydrazone Methodology in Asymmetric Synthesis,” Tetrahedron 2002, 58, 2253–2329.

    Article  CAS  Google Scholar 

  • D. Seebach, A. R. Sting, M. Hoffmann, “Self-Regeneration of Stereocenters (SRS — Applications, Limitations, and Abandonment of a Synthetic Principle,” Angew. Chem. Int. Ed. Engl. 1997, 35, 2708–2748.

    Article  Google Scholar 

  • J. E. McMurry, “Ester Cleavages via SN2-Type Dealkylation,” Org. React. 1976, 24, 187–224.

    CAS  Google Scholar 

13.3

  • D. A. Evans, J. V. Nelson, T. R. Taber, “Stereoselective Aldol Condensations,” Top. Stereochem. 1982, 13, 1.

    Article  CAS  Google Scholar 

  • C. H. Heathcock, “The Aldol Addition Reaction,” in Asymmetric Synthesis — Stereodifferentiating Reactions, Part B (J. D. Morrison, Ed.), Vol. 3, 111, AP, New York, 1984.

    Google Scholar 

  • M. Braun, “Recent Developments in Stereoselective Aldol Reactions”, in Advances in Carbanion Chemistry (V. Snieckus, Ed.), Vol. 1, 177, Jai Press Inc, Greenwich, CT, 1992.

    Google Scholar 

  • M. Braun, “Simple Diastereoselection and Transition State Models of Aldol Additions”, in Stereoselective Synthesis (Houben-Weyl) 4th ed. 1996, (G. Helmchen, R. W. Hoffmann, J. Mulzer, E. Schaumann, Eds.), 1996, Vol. E 21 (Workbench Edition), 3, 1603–1666, Georg Thieme Verlag, Stuttgart.

    Google Scholar 

  • C. H. Heathcock, “The Aldol Reaction: Group I and Group II Enolates,” in Comprehensive Organic Synthesis (B. M. Trost, I. Fleming, Eds.), Vol. 2, 181, Pergamon Press, Oxford, 1991.

    Google Scholar 

  • C. H. Heathcock, “Modern Enolate Chemistry: Regio-and Stereoselective Formation of Enolates and the Consequence of Enolate Configuration on Subsequent Reactions,” in Modern Synthetic Methods (R. Scheffold, Ed.), Vol. 6, 1, Verlag Helvetica Chimica Acta, Basel, Switzerland, 1992.

    Google Scholar 

  • C. Palomo, M. Oiarbide, J. M. Garcia, “The Aldol Addition Reaction: An Old Transformation at Constant Rebirth”, Chem. Eur. J. 2002, 8, 36–44.

    Article  CAS  Google Scholar 

13.4

  • A. T. Nielsen, W. J. Houlihan, “The Aldol Condensation”, Org. React. 1968, 15, 1–438.

    Google Scholar 

  • G. Jones, “The Knoevenagel Condensation”, Org. React. 1967, 15, 204–599.

    CAS  Google Scholar 

  • L. F. Tietze, U. Beifuss, “The Knoevenagel Reaction”, in Comprehensive Organic Synthesis (B. M. Trost, I. Fleming, Eds.), Vol. 2, 341, Pergamon Press, Oxford, 1991.

    Google Scholar 

  • M. Braun, “Syntheses with Aliphatic Nitro Compounds”, in Organic Synthesis Highlights (J. Mulzer, H.-J. Altenbach, M. Braun, K. Krohn, H.-U. Reißig, Eds.), VCH, Weinheim, New York, 1991, 25–32.

    Google Scholar 

13.5

  • B. R. Davis, P. J. Garratt, “Acylation of Esters, Ketones and Nitriles,” in Comprehensive Organic Synthesis (B. M. Trost, I. Fleming, Eds.), Vol. 2, 795, Pergamon Press, Oxford, 1991.

    Google Scholar 

  • T. H. Black, “Recent Progress in the Control of Carbon Versus Oxygen Acylation of Enolate Anions”, Org. Prep. Proced. Int. 1988, 21, 179–217.

    Article  Google Scholar 

  • C. R. Hauser, B. E. Hudson, Jr., “The Acetoacetic Ester Condensation and Certain Related Reactions”, Org. React. 1942, 1, 266–302.

    Google Scholar 

  • W. S. Johnson, “The Formation of Cyclic Ketones by Intramolecular Acylation,” Org. React. 1944, 2, 114–177.

    Google Scholar 

  • J. P. Schaefer, J. J. Bloomfield, “The Dieckmann Condensation”, Org. React. 1967, 15, 1–203.

    CAS  Google Scholar 

  • C. R. Hauser, F. W. Swamer, J. T. Adams, “The Acylation of Ketones to Form β-Diketones or β-Keto Aldehydes”, Org. React. 1954, 8, 59–196.

    Google Scholar 

  • V. Kel’in, “Recent Advances in the Synthesis of 1,3-Diketones,” Curr. Org. Chem. 2003, 7, 1691–1711.

    Article  CAS  Google Scholar 

  • S. Benetti, R. Romagnoli, C. De Risi, G. Spalluto, V. Zanirato, “Mastering β-Keto Esters,” Chem. Rev. 1995, 95, 1065–1115.

    Article  CAS  Google Scholar 

13.6

  • Y. Yamamoto, S. G. Pyne, D. Schinzer, B. L. Feringa, J. F. G. A. Jansen, “Formation of C-C Bonds by Reactions Involving Olefinic Double Bonds — Addition to α,β-Unsaturated Carbonyl Compounds (Michael-Type Additions),” in Methoden Org. Chem. (Houben-Weyl) 4th ed. 1952-, Stereoselective Synthesis (G. Helmchen, R. W. Hoffmann, J. Mulzer, E. Schaumann, Eds.), Vol. E21b, 2041, Georg Thieme Verlag, Stuttgart, 1995.

    Google Scholar 

  • P. Perlmutter, “Conjugate Addition Reactions in Organic Synthesis,” Pergamon Press, Oxford, U. K., 1992.

    Google Scholar 

  • A. Bernardi, “Stereoselective Conjugate Addition of Enolates to α,β-Unsaturated Carbonyl Compounds”, Gazz. Chim. Ital. 1995, 125, 539–547.

    CAS  Google Scholar 

  • R. D. Little, M. R. Masjedizadeh, O. Wallquist (in part), J. I. McLoughlin (in part), “The Intramolecular Michael Reaction,” Org. React. 1995, 47, 315–552.

    CAS  Google Scholar 

  • M. J. Chapdelaine, M. Hulce, “Tandem Vicinal Difunctionalization: β-Addition to α,β-Unsaturated Carbonyl Substrates Followed by α-Functionalization,” Org. React. 1990, 38, 225–653.

    CAS  Google Scholar 

  • D. A. Oare, C. H. Heathcock, “Stereochemistry of the Base-Promoted Michael Addition Reaction”, Top. Stereochem. 1989, 19, 227–407.

    Article  CAS  Google Scholar 

  • E. D. Bergmann, D. Ginsburg, R. Pappo, “The Michael Reaction”, Org. React. 1959, 10, 179–555.

    CAS  Google Scholar 

  • R. D. Little, M. R. Masjedizadeh, “The Intramolecular Michael Reaction,” Org. React. (N. Y.) 1995, 47, 315.

    CAS  Google Scholar 

  • J. A. Bacigaluppo, M. I. Colombo, M. D. Preite, J. Zinczuk, E. A. Ruveda, “The Michael-Aldol Condensation Approach to the Construction of Key Intermediates in the Synthesis of Terpenoid Natural Products,” Pure Appl. Chem. 1996, 68, 683.

    Article  CAS  Google Scholar 

  • J. H. Brewster, E. L. Eliel, “Carbon-Carbon Alkylations with Amines and Ammonium Salts”, Org. React. 1953, 7, 99–197 [covers Michael Additions Starting from β-(Dialkylamino) ketones,-esters or Nitriles].

    Google Scholar 

  • B. L. Feringa, J. F. G. A. Jansen, “Addition of Enolates and Azaenolates to α,β-Unsaturated Carbonyl Compounds”, in Stereoselective Synthesis (Houben-Weyl) 4th ed. 1996, (G. Helmchen, R. W. Hoffmann, J. Mulzer, E. Schaumann, Eds.), 1996, Vol. E21 (Workbench Edition), 4, 2104–2156, Georg Thieme Verlag, Stuttgart.

    Google Scholar 

  • W. Nagata, M. Yoshioka, “Hydrocyanation of Conjugated Carbonyl Compounds,” Org. React. 1977, 25, 255–476.

    CAS  Google Scholar 

  • S. Arseniyadis, K. S. Kyler, D. S. Watt, “Addition and Substitution Reactions of Nitrile-Stabilized Carbanions”, Org. React. 1984, 31, 1–364.

    CAS  Google Scholar 

  • H. L. Bruson, “Cyanoethylation,” Org. React. 1949, 5, 79–135.

    CAS  Google Scholar 

  • F. F. Fleming, Q. Wang, “Unsaturated Nitriles: Conjugate Additions of Carbon Nucleophiles to a Recalcitrant Class of Acceptors,” Chem. Rev. 2003, 103, 2035–2077.

    Article  CAS  Google Scholar 

  • M. Ihara, K. Fukumoto, “Syntheses of Polycyclic Natural Products Employing the Intramolecular Double Michael Reaction,” Angew. Chem. Int. Ed. Engl. 1993, 32, 1010–1022.

    Article  Google Scholar 

  • E. V. Gorobets, M. S. Miftakhov, F. A. Valeev, “Tandem Transformations Initiated and Determined by the Michael Reaction,” Russ. Chem. Rev. 2000, 69, 1001–1019.

    Article  CAS  Google Scholar 

  • A. Berkessel, “Formation of C-O Bonds by Conjugate Addition of O-Nucleophiles”, in Stereoselective Synthesis (Houben-Weyl) 4th ed. 1996, (G. Helmchen, R. W. Hoffmann, J. Mulzer, E. Schaumann, Eds.), 1996, Vol. E21 (Workbench Edition), 8, 4818–4856, Georg Thieme Verlag, Stuttgart.

    Google Scholar 

  • R. Schwesinger, J. Willaredt, “Epoxidation of Nucleophilic C-C Double Bonds”, in Stereoselective Synthesis (Houben-Weyl) 4th ed. 1996, (G. Helmchen, R. W. Hoffmann, J. Mulzer, E. Schaumann, Eds.), 1996, Vol. E21 (Workbench Edition), 8, 4600–4648, Georg Thieme Verlag, Stuttgart.

    Google Scholar 

  • M. Schäfer, K. Drauz, M. Schwarm, “Formation of C-N Bonds by Conjugate Addition of N-Nu-cleophiles”, in Stereoselective Synthesis (Houben-Weyl) 4th ed. 1996, (G. Helmchen, R. W. Hoffmann, J. Mulzer, E. Schaumann, Eds.), 1996, Vol. E21 (Workbench Edition), 9, 5588–5642, Georg Thieme Verlag, Stuttgart.

    Google Scholar 

Further Reading

  • J. R. Johnson, “The Perkin Reaction and Related Reactions,” Org. React. 1942, 1, 210–265.

    Google Scholar 

  • H. E. Carter, “Azlactones”, Org. React. 1946, 3, 198–239.

    Google Scholar 

  • M. S. Newman, B. J. Magerlein, “The Darzens Glycidic Ester Condensation,” Org. React. 1949, 5, 413–440.

    CAS  Google Scholar 

  • W. S. Johnson, G. H. Daub, “The Stobbe Condensation,” Org. React. 1951, 6, 1–73.

    Google Scholar 

  • R. R. Phillips, “The Japp-Klingemann Reaction,” Org. React. 1959, 10, 143–178.

    CAS  Google Scholar 

  • S. J. Parmerter, “The Coupling of Diazonium Salts with Aliphatic Carbon Atoms,” Org. React. 1959, 10, 1–142.

    CAS  Google Scholar 

  • D. B. Collum, “Solution Structures of Lithium Dialkylamides and Related N-lithiated Species: Results from 6Li-15N Double Labeling Experiments”, Acc. Chem. Res. 1993, 26, 227–234.

    Article  CAS  Google Scholar 

  • P. Brownbridge, “Silyl Enol Ethers in Synthesis”, Synthesis 1983, 85.

    Google Scholar 

  • J. M. Poirier, “Synthesis and Reactions of Functionalized Silyl Enol Ethers,” Org. Prep. Proced. Int. 1988, 20, 317–369.

    Article  CAS  Google Scholar 

  • H. E. Zimmerman, “Kinetic Protonation of Enols, Enolates, Analogues. The Stereochemistry of Ketonisation,” Acc. Chem. Res. 1987, 20, 263.

    Article  CAS  Google Scholar 

  • S. Hünig, “Formation of C-H Bonds by Protonation of Carbanions and Polar Double Bonds”, in Stereo-selective Synthesis (Houben-Weyl) 4th ed. 1996, (G. Helmchen, R. W. Hoffmann, J. Mulzer, E. Schaumann, Eds.), 1996, Vol. E21 (Workbench Edition), 7, 3851–3912, Georg Thieme Verlag, Stuttgart.

    Google Scholar 

  • C. Fehr, “Enantioselective Protonation of Enolates and Enols”, Angew. Chem. Int. Ed. Engl. 1996, 35, 2566–2587.

    Article  Google Scholar 

  • F. A. Davis, B.-C. Chen, “Formation of C-O Bonds by Oxygenation of Enolates,” in Stereoselective Synthesis (Houben-Weyl) 4th ed. 1996, (G. Helmchen, R. W. Hoffmann, J. Mulzer, E. Schaumann, Eds.), 1996, Vol. E21 (Workbench Edition), 8, 4497–4518, Georg Thieme Verlag, Stuttgart.

    Google Scholar 

  • P. Fey, W. Hartwig, “Formation of C-C Bonds by Addition to Carbonyl Groups (C=O) — Azaenolates or Nitronates,” in Methoden Org. Chem. (Houben-Weyl) 4th ed. 1952-, Stereoselective Synthesis (G. Helmchen, R. W. Hoffmann, J. Mulzer, E. Schaumann, Eds.), Vol. E21b, 1749, Georg Thieme Verlag, Stuttgart, 1995.

    Google Scholar 

  • K. Krohn, “Stereoselective Reactions of Cyclic Enolates”, in Organic Synthesis Highlights (J. Mulzer, H.-J. Altenbach, M. Braun, K. Krohn, H.-U. Reißig, Eds.), VCH, Weinheim, New York, etc., 1991, 9–13.

    Google Scholar 

  • K. F. Podraza, “Regiospecific Alkylation of Cyclohexenones. A Review”, Org. Prep. Proced. Int. 1991, 23, 217–235.

    Article  CAS  Google Scholar 

  • S. K. Taylor, “Reactions of Epoxides with Ester, Ketone and Amide Enolates”, Tetrahedron 2000, 56, 1149–1163.

    Article  CAS  Google Scholar 

  • T. M. Harris, C. M. Harris, “The α-Alkylation and α-Arylation of Dianions of β-Dicarbonyl Compounds”, Org. React. 1969, 17, 155–212.

    CAS  Google Scholar 

  • C. M. Thompson, D. L. C. Green, “Recent Aadvances in Dianion Chemistry,” Tetrahedron 1991, 47, 4223–4285.

    Article  CAS  Google Scholar 

  • B. M. Kim, S. F. Williams, S. Masamune, “The Aldol Reaction: Group III Enolates”, in Comprehensive Organic Synthesis (B. M. Trost, I. Fleming, Eds.), Vol. 2, 239, Pergamon Press, Oxford, 1991.

    Google Scholar 

  • M. Sawamura, Y. Ito, “Asymmetric Carbon-Carbon Bond Forming Reactions: Asymmetric Aldol Reactions,” in Catalytic Asymmetric Synthesis (I. Ojima, Ed.), 367, VCH, New York, 1993.

    Google Scholar 

  • A. S. Franklin, I. Paterson, “Recent Developments in Asymmetric Aldol Methodology,” Contemporary Organic Synthesis 1994, 1, 317.

    Article  CAS  Google Scholar 

  • C. J. Cowden, I. Paterson, “Asymmetric Aldol Reactions Using Boron Enolates,” Org. Prep. Proced. Int. 1997, 51, 1–200.

    CAS  Google Scholar 

  • E. M. Carreira, “Aldol Reaction: Methodology and Stereochemistry,” in Modern Carbonyl Chemistry, Ed.: J. Otera, Wiley-VCH, Weinheim, 2000, 227–248.

    Chapter  Google Scholar 

  • I. Paterson C. J. Cowden, D. J. Wallace, “Stereoselektive Aldol Reactions in the Synthesis of Polyketide Natural Products,” in Modern Carbonyl Chemistry, Ed.: J. Otera, Wiley-VCH, Weinheim, 2000, 249–297.

    Chapter  Google Scholar 

  • G. Casiraghi, F. Zanardi, G. Appendino, G. Rassu, “The Vinylogous Aldol Reaction: A Valuable, Yet Understated Carbon-Carbon Bond-Forming Maneuver”, Chem. Rev. 2000, 100, 1929–1972.

    Article  CAS  Google Scholar 

  • M. Sawamura, Y. Ito, “Asymmetric Aldol Reactions-Discovery and Development”, in Catalytic Asymmetric Synthesis, Ed.: I. Ojima, Wiley-VCH, New York, 2nd ed., 2000, 493–512.

    Google Scholar 

  • E. M. Carreira, “Recent Advances in Asymmetric Aldol Addition Reactions”, in Catalytic Asymmetric Synthesis, Hrsg.: I. Ojima, Wiley-VCH, New York, 2nd ed., 2000, 513–542.

    Google Scholar 

  • T. D. Machajewski, C.-H. Wong, R. A. Lerner, “The Catalytic Asymmetric Aldol Reaction,” Angew. Chem. Int. Ed. Engl. 2000, 39, 1352–1374.

    Article  CAS  Google Scholar 

  • A. Fürstner, “Recent Advancements in the Reformatsky Reaction,” Synthesis 1989, 8, 571–590.

    Article  Google Scholar 

  • B. C. Chen, “Meldrum’s Acid in Organic Synthesis,” Heterocycles 1991, 32, 529–597.

    Article  CAS  Google Scholar 

  • C. F. Bernasconi, “Nucleophilic Addition to Olefins. Kinetics and Mechanism”, Tetrahedron 1989, 45, 4017–4090.

    Article  CAS  Google Scholar 

  • F. A. Luzzio, “The Henry Reaction: Recent Examples,” Tetrahedron 2001, 57, 915–945.

    Article  CAS  Google Scholar 

  • S. Arseniyadis, K. S. Kyler, D. S. Watt, “Addition and Substitution Reactions of Nitrile-Stabilized Carbanions”, Org. React. 1984, 31, 1–364.

    CAS  Google Scholar 

  • S. G. Pyne, “Addition of Metalated Allylic Phosphine Oxides, Phosphonates, Sulfones, Sulfoxides and Sulfoximines to α,β-Unsaturated Carbonyl Compounds”, in Stereoselective Synthesis (Houben-Weyl) 4th ed. 1996, (G. Helmchen, R. W. Hoffmann, J. Mulzer, E. Schaumann, Eds.), 1996, Vol. E21 (Workbench Edition), 4, 2068–2086, Georg Thieme Verlag, Stuttgart.

    Google Scholar 

  • M. Kanai, M. Shibasaki, “Asymmetric Michael Reactions”, in Catalytic Asymmetric Synthesis, Hrsg.: I. Ojima, Wiley-VCH, New York, 2nd ed., 2000, 569–592.

    Google Scholar 

  • K. Tomioka, “Asymmetric Michael-Type Addition Reaction,” in Modern Carbonyl Chemistry, Ed.: J. Otera, Wiley-VCH, Weinheim, 2000, 491–505.

    Chapter  Google Scholar 

  • N. Krause, A. Hoffmann-Roder, “Recent Advances in Catalytic Enantioselective Michael Additions,” Synthesis 2001, 171–196.

    Google Scholar 

Download references

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

(2010). Chemistry of the Alkaline Earth Metal Enolates. In: Harmata, M. (eds) Organic Mechanisms. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-03651-4_13

Download citation

Publish with us

Policies and ethics