Skip to main content
Book cover

Mars pp 99–138Cite as

Weather Influence on Solar Thermal Power Plants Operation on Mars

  • Chapter
  • 4383 Accesses

Introduction

For many years space researchers realized that in some specific situations solar dynamic power systems can provide significant savings in life cycle costs when compared with conventional photovoltaic power systems with battery storage (Menetrey 1963; Secunde et al. 1989; Prisnjakov 1991; Prisnjakov et al. 1991). A standard solar dynamic power system uses a mirror to concentrate solar radiation onto an absorber structure. By conduction through a solid material or circulation of a working fluid, the absorber heat is transferred to a thermal engine (i.e. a turbogenerator, Stirling engine, termocouple or thermionic-emitter). Alternators coupled to these thermal engines may generate electrical energy. Previous practice proved that three different cycles can be used for thermodynamic conversion of solar radiation: Brayton, Rankine and Stirling (Menetrey 1963; Prisnjakov 1991; Prisnjakov et al. 1991). For continuos operation during dark periods the use of melted materials to store thermal energy is being considered. Among the advantages of dynamic power systems one could quote their ability to provide electrical energy and heat simultaneously, the fact that the power plant may be unified by using either solar or nuclear energy or their relative invulnerability to corpuscular particles and to electromagnetic radiation and the possibility of power control according to a given power consumption schedule (Prisnjakov 1991).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Angelino, G., Invernizzi, C.: Cyclic Methylsiloxanes as working fluids for space power cycles. J. Solar. Energy Engng. 115, 130–137 (1993)

    Article  Google Scholar 

  • Angelo Jr., J.A., Buden, D.: The nuclear power satellite (NPS) - key to a sustainable global energy economy and solar system civilization. In: Proc. of SPS 1991, Power from space, Paris, August 27-30, pp. 117–124 (1991)

    Google Scholar 

  • Badescu, V.: Discussion on the unification of three different theories concerning the ideal conversion of enclosed radiation. J. Sol. Energy Engng. 110, 349 (1988)

    Article  Google Scholar 

  • Badescu, V.: On the thermodynamics of the conversion of diluted radiation. J. Phys. D 23, 289–292 (1990)

    Article  Google Scholar 

  • Badescu, V.: Maximum conversion efficiency for the utilization of multiply scattered solar radiation. J. Phys. D 24, 1882–1885 (1991)

    Article  Google Scholar 

  • Badescu, V.: Optimum operation of a solar converter in combination with a Stirling or Ericsson heat engine. Int. J. Energy 17, 601–607 (1992)

    Google Scholar 

  • Badescu, V.: Dynamic solar space power systems: optimum design and operation. Space Technol. 14, 331–337 (1994)

    Google Scholar 

  • Badescu, V.: Different strategies for maximum solar radiation collection on Mars surface. Acta Astronautica 43, 409–421 (1998a)

    Article  Google Scholar 

  • Badescu, V.: Accurate upper bounds for the conversion efficiency of black-body radiation energy into work. Phys. Lett. A 244, 31–34 (1998b)

    Article  Google Scholar 

  • Badescu, V.: Accurate upper bounds for the efficiency of converting solar energy into work. J. Phys. D 31, 820–825 (1998c)

    Article  Google Scholar 

  • Badescu, V.: Simple upper bound efficiencies for endoreversible conversion of thermal radiation. J. Non-Equilib Thermodyn 24, 196–202 (1999)

    Article  MATH  Google Scholar 

  • Badescu, V.: Accurate upper bound efficiency for solar thermal power generation. Int. J. Solar Energy 20, 149–160 (2000)

    Google Scholar 

  • Badescu, V.: Inference of atmospheric optical depth from near-surface meteorological parameters on Mars. Renewable Energy 24, 45–57 (2001)

    Article  Google Scholar 

  • Badescu, V.: Simulation of a solar Stirling engine operation under various weather conditions on Mars. J. of Solar Energy Engng. 126, 812–818 (2004)

    Article  Google Scholar 

  • Badescu, V., Popescu, G., Feidt, M.: Model of optimized solar heat engine operating on Mars. Energy Conv. Mngmnt. 40, 1713–1721 (1999)

    Article  Google Scholar 

  • Badescu, V., Popescu, G., Feidt, M.: Design and optimisation of a combination solar collector - thermal engine operating on Mars. Renewable Energy 21, 1–22 (2000a)

    Article  Google Scholar 

  • Badescu, V., Popescu, G., Feidt, M.: Simulation of a Martian solar thermal power plant: diurnal operation and power-efficiency correlations. J. of the British Interplanetary Soc. 53, 131–144 (2000b)

    Google Scholar 

  • Badescu, V., Popescu, G., Feidt, M.: Simulation of a thermal solar power plant operating on Mars under clear sky and dust storm conditions. Acta Astronautica 49, 667–679 (2001a)

    Article  Google Scholar 

  • Badescu, V., Popescu, G., Feidt, M., Costea, M.: Optimisation du fonctionnement sur Mars d’un moteur de Stirling solaire (in French). Termotehnica 5(1), 24–28 (2001b)

    Google Scholar 

  • Bejan, A.: Unification of three different theories concerning the ideal conversion of enclosed radiation. J. Sol. Energy Engng. 109, 46–51 (1987)

    Article  Google Scholar 

  • Bejan, A.: Advanced engineering thermodynamics. Wiley, New York (1988)

    Google Scholar 

  • Benz, N., Beikircher, T.: High efficiency evacuated flat-plate solar collectors for process steam production. Solar Energy 65, 111–118 (1999)

    Article  Google Scholar 

  • Candau, Y.: On the exergy of radiation. Solar Energy 75, 241–247 (2003)

    Article  Google Scholar 

  • Duffie, J.A., Beckmann, W.A.: Solar Energy Thermal Processes. Wiley, New York (1974)

    Google Scholar 

  • Eaton, C.B., Blum, H.A.: The use of moderate vacum environments as a means of increasing the collectors efficiencies and operating temperatures of a flat-plate solar collectors. Solar Energy 17, 151–158 (1975)

    Article  Google Scholar 

  • Golombek, M.P., Cook, R.A., Economou, T., Folkner, W.M., Haldermann, A.F.C., Kallemeyn, P.H., Knudsen, J.M., Manning, R.M., Moore, H.J., Parker, T.J., Rieder, R., Schofield, J.T., Smith, P.H., Vaughan, R.M.: Overview of the Mars Pathfinder mission and assessment of landing site predictions. Science 278, 1743–1748 (1997)

    Article  Google Scholar 

  • Hourdin, F., Forget, F., Talagrand, O.: The sensitivity of the Martian surface pressure and atmospheric mass budget to various parameters: A comparison between numerical simulations and Viking observations. J. Geophys Res. 100(E3), 5501–5523 (1995)

    Article  Google Scholar 

  • Howell, J.R., Bannerot, R.B.: Optimum solar collector operation for maximum cycle work output. Solar Energy 19, 149–153 (1977)

    Article  Google Scholar 

  • Jeter, S.J.: Maximum conversion efficiency for the utilization of direct solar radiation. Solar Energy 26, 231–236 (1981)

    Article  Google Scholar 

  • Landsberg, P.T., Tonge, G.: Thermodynamic energy conversion efficiencies. J. Appl. Phys. 51, R1–R20 (1979)

    Article  Google Scholar 

  • Landsberg, P.T., Mallinson, J.R.: Thermodynamic constraints, effective temperatures and solar cells. In: Coll. Int. sur l’Electricite Solaire, Toulouse, CNES, pp. 27–35 (1976)

    Google Scholar 

  • Landsberg, P.T., Badescu, V.: The geometrical factor of spherical radiation sources. Europhys Lett. 50, 816–822 (2000)

    Article  Google Scholar 

  • Lide, D.R. (ed.): Handbook of chemistry and physics, 71th edn., pp. 15–39. CRC Press, Boca Raton (1991)

    Google Scholar 

  • Martin, L.J., Zurek, R.W.: An analysis of the history of dust activity on Mars. J. Geophys. Res. 98(E2), 3221–3246 (1993)

    Article  Google Scholar 

  • McLallian, K.L., et al.: The solar dynamic radiator with a hystorical perspective. In: Proceedings of the 23rd International Energy Conversion Engineering Conference, Denver, CO, ASME, July 31-August 5, 1988, vol. 3, pp. 335–340 (1988)

    Google Scholar 

  • Meinel, A.B., Meinel, M.P.: Applied Solar Energy. Addison-Wesley Publishing Company, Reading (1976)

    Google Scholar 

  • Menetrey, W.R.: Space applications of solar energy. In: Zarem, A.M., Erway, D.D. (eds.) Introduction to the utilization of solar energy, p. 326. Mc Graw Hill, New York (1963)

    Google Scholar 

  • Mozjorine, Y.A., Senkevich, V.P., Koval, A.D., Narimanov, E.A.: Small - scale space power stations: feasibility and usage prospects. In: Proc. of SPS 91, Power from space, Paris, August 27-30, 1991, pp. 381–392 (1991)

    Google Scholar 

  • Petela, R.: Exergy of heat radiation. J. Heat Transfer 86, 187–192 (1964)

    Google Scholar 

  • Petela, R.: Exergy of undiluted thermal radiation. Solar Energy 74, 469–488 (2003)

    Article  Google Scholar 

  • Pop, M.G., Leca, A., Prisecaru, I., Neaga, C., Zidaru, G., Musatescu, V., Isbasoiu, E.C.: Indrumar -Tabele, monograme si formule termotehnice (in Romanian), vol. 1. Editura Tehnica, Bucuresti (1987)

    Google Scholar 

  • Press, W.H.: Theoretical maximum for energy from direct and diffuse sunlight. Nature 264, 734–735 (1976)

    Article  Google Scholar 

  • Prisnjakov, V.F.: SPS interest and studies in USSR. In: Proc. of SPS 1991, Power from space, Paris, August, 27-30, p 36 (1991)

    Google Scholar 

  • Prisnjakov, V.F., Statsenko, I.N., Kondratjev, A.I., Markov, V.L., Petrov, B.E., Gabrinets, V.A.: Developing space power Brayton systems with solar heat input. Research of working process of high temperature latent heat storage system. In: Proc. of SPS 1991, Power from space, Paris, August 27-30, pp. 465–470 (1991)

    Google Scholar 

  • Prisnjakov, V.F., Statsenko, I.N., Kondratjev, A.I., Markov, V.L., Petrov, B.E., Gabrinets, V.A.: Developing a space power Brayton system. Space Power 13, 135–144 (1994)

    Google Scholar 

  • Secunde, R., Labus, T.L., Lovely, R.G.: Solar dynamic power module design. In: Proc. 24th International Energy Conversion Conf., vol. 1, pp. 299–307. IEEE, Piscataway (1989)

    Chapter  Google Scholar 

  • Senft, J.R.: An introduction to low temperature differential Stirling engines. Moriya Press, River Falls (1996)

    Google Scholar 

  • Spanner, D.C.: Introduction to thermodynamics, p. 218. Academic Press, London (1964)

    Google Scholar 

  • Stefanescu, D., Marinescu, M., Danescu, A.: Transferul de caldura în tehnica (in Romanian), vol. 1. Editura Tehnica, Bucuresti (1982)

    Google Scholar 

  • Weingartner, S., Blumenberg, J., Ruppe, H.O.: Influence of orbit on solar - dynamic power systems. Space Power 13, 103–120 (1994)

    Google Scholar 

  • Zurek, R.W., Barnes, J.R., Haberle, R.M., Pollack, J.B., Tillman, J.E., Leovy, C.B.: Dynamics of the atmosphere of Mars. In: Kieffer, H.H., et al. (eds.) Mars, ch. 26, pp. 835–933. University of Arizona Press (1992)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Badescu, V. (2009). Weather Influence on Solar Thermal Power Plants Operation on Mars. In: Badescu, V. (eds) Mars. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-03629-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-03629-3_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-03628-6

  • Online ISBN: 978-3-642-03629-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics