Skip to main content

Weather Influence on PV Solar Cells Operation on Mars

  • Chapter
Mars

Introduction

Among the different solar space power systems to be used on Mars a leading position is played by the photovoltaic (shortly, PV) solar cells. Due to their relatively low cost power, high reliability and the lack of moving parts they powered the space program from the very beginning (Landis and Appelbaum 1991). As a result the array manufacturing technology is now well developed, and the technology is well characterized for vibration, thermal-cycling, and other environmental loads of the space environment. A number of studies concerning the usage of PV cells on the Mars surface have been performed during the years and we quote here some of them. A rover powered by a PV array was designed in Hibbs (1989). To add robustness, a fixed array rather than one which tracks the sun was envisaged, because of the modest power requirements (275 Watt average power and peak power capability of up to 2000 W during climbing over large boulders). The array surface was as large as 7 m2. Another study refers to a long-endurance, remotely piloted aircraft capable of flight within the Martian environment (Colozza 1990). There is a variety of mission scenarios which would be possible with this aircraft ranging from magnetic and gravity field mapping to surveillance / reconnaissance missions. The flight duration would be on the order of one year. The power and propulsion systems consist of solar PV array panels, a regenerative fuel cell and an electric motor. Depending on the solar cell type the required PV array surface could be quite large (from 336 to 405 m2 in case of silicon-based solar cells or from 118 to 166 m2 when gallium arsenide PV arrays are used). A solar power system for a 40 day manned Mars surface scientific expedition was studied in McKissock et al. (1990). The electrical power requirements were assumed to be 40 kW for life support and experiment power during the Martian day and 20 kW for life support during the Martian night. The solar energy system consisted of roll out amorphous silicon arrays and a hydrogen - oxygen regenerative fuel cell energy storage system. The total array covers 2822 m2 when deployed and has a blanket mass of 177.6 kg.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Appelbaum, J., Flood, D.J.: The Mars climate for a photovoltaic system operation. NASA Technical Memorandum 101994, Lewis Research Center, Cleveland, Ohio (1989)

    Google Scholar 

  • Appelbaum, J., Flood, D.J.: Solar radiation on Mars. Solar Energy 45, 353–363 (1990)

    Article  Google Scholar 

  • Appelbaum, J., Landis, G.A.: Solar radiation for Mars power systems. In: Proceedings of the European Space Power Conference, Florence, Italy (ESA SP-320), 2-6 September 1991, pp. 707–712 (1991)

    Google Scholar 

  • Appelbaum, J., Landis, G.A.: Photovoltaic arrays for Martian surface power. Acta Astronautica 30, 127–142 (1993)

    Article  Google Scholar 

  • Appelbaum, J., Sherman, I., Landis, G.A.: Solar radiation on Mars: stationary photovoltaic array. J. Propulsion and Power 11, 554–561 (1995)

    Article  Google Scholar 

  • Appelbaum, J., Flood, D.J., Crutchik, M.: Solar radiation on Mars: tracking photovoltaic array. J. Propulsion and Power 12, 410–419 (1996)

    Article  Google Scholar 

  • Badescu, V.: Maximum conversion efficiency for the utilization of multiple scattered solar radiation. J. Phys. D. Appl. Phys. 24, 882–1885 (1991)

    Article  Google Scholar 

  • Badescu, V.: Different strategies for maximum solar radiation collection on Mars surface. Acta Astronautica 43, 409–421 (1998)

    Article  Google Scholar 

  • Badescu, V., Landsberg, P.T.: Statistical thermodynamic foundation for photovoltaic and photothermal conversion. II. Application to photovoltaic conversion. J. Appl. Phys. 78, 2793–2802 (1995)

    Article  Google Scholar 

  • Badescu, V., Landsberg, P.T., Dinu, C.: Thermodynamic optimization of non-concentrating hybrid solar converters. J. Phys. D: Appl. Phys. 29, 246–252 (1996)

    Article  Google Scholar 

  • Badescu, V., Landsberg, P.T., De Vos, A.: Statistical thermodynamic foundation for photovoltaic and photothermal conversion. III Application to hybrid converters. J. Appl. Phys. 81, 3692–3699 (1997)

    Article  Google Scholar 

  • Colozza, A.J.: Preliminary design of a long-endurance mars aircraft. NASA CR185243, Sverdrup Technology Inc, Aerospace Technology Park, Brookpark, Ohio 44135, prepared for Lewis Research Center under Contract NAS3-25266 (1990)

    Google Scholar 

  • Colozza, A.J.: Design and optimization of a self-deploying PV tent array. NASA CR 187119, Prepared for Lewis Research Center under contract NAS3-25266 (1991)

    Google Scholar 

  • Colozza, A.J.: Design and optimization of a self-deploying single tracking PV array. NASA CR189132, prepared for Lewis Research Center under contract NAS3-25266 (1992)

    Google Scholar 

  • Danescu, A., Popa, B., Radcenco, V., Carbunaru, A., Iosifescu, C., Marinescu, M., Petrescu, S., Silasi, C., Stefanescu, D., Aradau, D., Dinache, P., Madarasan, T.: Termotehnica si masini termice, p. 303. Table 12.7. Tehnica, Bucharest (1985)

    Google Scholar 

  • Flood, D.J.: The NASA space solar cell advanced research program. NASA Technical Memorandum 102020, Lewis Research Center, Cleveland, Ohio (1989)

    Google Scholar 

  • Green, M.A., Emery, K., Hishikawa, Y., Warta, W.: Solar cell efficiency tables (Version 31). Prog. Photovoltaics: Res. Appl. 16, 61–67 (2008)

    Article  Google Scholar 

  • Hamakawa, Y.: Solar photovoltaics: recent progress and new roles. In: Krupp, H. (ed.) Energy politics and Schumpeter Dynamics, pp. 206–230. Springer, Tokyo (1992)

    Google Scholar 

  • Hibbs, B.D.: Mars rover feasibility study, Final Report, AeroVironment, Inc, Report AV-FR-89/7011 (1989)

    Google Scholar 

  • Hourdin, F.: A new representation of the absorption by the CO2 15-μm band for a Martian general circulation model. J. Geophys. Res. 97(E11), 18319–18335 (1992)

    Article  Google Scholar 

  • Hourdin, F., Forget, F., Talagrand, O.: The sensitivity of the Martian surface pressure and atmospheric mass budget to various parameters: A comparison between numerical simulations and Viking observations. J. Geophys. Res. 100(E3), 5501–5523 (1995)

    Article  Google Scholar 

  • Kahaner, D., Moler, C., Nash, S.: Numerical methods and software. Prentice Hall, New Englewood Cliffs (1989)

    MATH  Google Scholar 

  • Landis, G.A.: Dust obscuration of Mars solar arrays. Acta Astronautica 38, 885–891 (1996)

    Article  Google Scholar 

  • Landis, G.A., Appelbaum, J.: Photovoltaic power options for Mars. Space Power 10, 225–237 (1991)

    Google Scholar 

  • Landsberg, P.T., Tonge, G.: Thermodynamics energy conversion efficiencies. J. Appl. Phys. 51, R1–R20 (1980)

    Article  Google Scholar 

  • Landsberg, P.T., Baruch, B.: The thermodynamics of the conversion of radiation energy for photovoltaics. J. Phys. A 22, 1911–1926 (1989)

    Article  Google Scholar 

  • McKissock, B.I., Kohout, L.L., Schmitz, P.C.: A solar power system for an early Mars expedition. NASA Technical Memorandum 103219, Lewis Research Center, Cleveland, Ohio, American Institute of Chemical Engineers summer National Meeting (1990)

    Google Scholar 

  • Reddy, M.R.: Space solar cells: tradeoff analysis. Sol Energy Mat Solar Cells 77, 175–208 (2003)

    Article  Google Scholar 

  • Santee, M.L., Crisp, D.: Diagnostic calculations of the circulation in the Martian atmosphere. J. Geophys. Res. 100(E3), 5465–5484 (1995)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Badescu, V. (2009). Weather Influence on PV Solar Cells Operation on Mars. In: Badescu, V. (eds) Mars. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-03629-3_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-03629-3_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-03628-6

  • Online ISBN: 978-3-642-03629-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics