Skip to main content

Synthesis and Applications of Mixed Oxide Nanotubes

  • Chapter
  • First Online:
Book cover Inorganic and Metallic Nanotubular Materials

Part of the book series: Topics in Applied Physics ((TAP,volume 117))

Abstract

Metal oxide nanotube is one of the nanostructured materials. Templates method, which is the technique in which templates are covered with metal oxides and the templates were removed to form metal oxide nanotubes, is a typical synthesis method for metal oxide nanotubes. In this section, synthesis of mixed oxide nanotubes using carbon nanofibers (CNFs) as templates is described. Because CNFs with various shapes were used as templates, oxide nanotubes with various shapes such as straight and helical were formed. Successive adsorption of metal oxide precursors on CNFs resulted in the formation of mixed oxide nanotubes with specific composition. In addition, a nano-macrostructured material, silica fiber-immobilized nanofibrous LaMnO3, was fabricated using this template process. In propane oxidation, the nano-macrostructured material showed superior activity to the conventional powder catalysts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Y. Mao, S. Banerjeea, S.S. Wong, Chem. Commun., 408 (2003)

    Google Scholar 

  2. T.-J. Park, Y. Mao, S.S. Wong, Chem. Commun., 2078 (2004)

    Google Scholar 

  3. K.J.C. van Bommel, A. Friggeri, S. Shinkai, Angew. Chem. Int. Ed. 42, 980 (2003)

    Article  Google Scholar 

  4. Q. Ji, R. Iwaura, M. Kogiiso, J.H. Jung, K. Yoshida, T. Shimizu, Chem. Mater. 16, 250 (2004)

    Article  Google Scholar 

  5. T. Seeger, Ph. Redlich, N. Grobert, M. Terrones, D.R.M. Walton, H.W. Kroto, M. Rühel, Chem. Phys. Lett. 339, 41 (2001)

    Article  Google Scholar 

  6. K.J.C. van Bommel, S. Shinkai, Langmuir 18, 4544(2002)

    Article  Google Scholar 

  7. B.A. Hernandez, K.-S. Chang, E.R. Fisher, P.K. Dorhout, Chem. Mater. 14, 480 (2002)

    Article  Google Scholar 

  8. G.B. Ji, H.L. Su, S.L. Tang, Y.W. Du, B.L. Xu, Chem. Lett. 34, 86 (2005)

    Article  Google Scholar 

  9. J. Wang, A. Manivannan, N. Wu, Thin Solid Films 517, 582 (2008)

    Article  Google Scholar 

  10. Y. Xu, J. Wei, J. Yao, J. Fu, D. Xue, Mater. Lett. 62, 1403 (2008)

    Article  Google Scholar 

  11. K.P. de Jong, J.W. Geus, Catal. Rev. Sci. Eng. 42, 481 (2000)

    Article  Google Scholar 

  12. H. Ogihara, M. Sadakane, Y. Nodasaka, W. Ueda, Chem. Mater. 18, 4981 (2006)

    Article  Google Scholar 

  13. H. Ogihara, M. Sadakane, Y. Nodasaka, W. Ueda, Chem. Lett. 36, 258 (2007)

    Article  Google Scholar 

  14. I. Ichinose, H. Senzu, T. Kunitake, Chem. Mater. 9, 1296 (1997)

    Article  Google Scholar 

  15. E. García-Bordejé, I. Kvande, D. Chen, M. Rønning, Adv. Mater. 18, 1589 (2006)

    Article  Google Scholar 

  16. N.A. Jarrah, F. Li, J.G. van Ommen, L. Leffers, J. Mater. Chem. 15, 1946 (2005)

    Article  Google Scholar 

  17. R. Vieira, C. Pham-Huu, M.J. Ledoux, Chem. Commun. 954 (2002)

    Google Scholar 

  18. F. Cesano, S. Bertarione, D. Scarano, A. Zecchina, Chem. Mater. 17, 5119 (2005)

    Article  Google Scholar 

  19. J.J. Delgado, D.S. Su, G. Rebmann, N. Keller, A. Gajovic, R. Schlögl, J. Catal. 244, 126 (2006)

    Article  Google Scholar 

  20. S. Takenaka, E. Kato, Y. Tomikubo, K. Otsuka, J. Catal. 219, 176 (2003)

    Article  Google Scholar 

  21. H. Ogihara, M. Sadakane, Q. Wu, Y. Nodasaka, W. Ueda, Chem. Commun. 39, 4047 (2007)

    Article  Google Scholar 

  22. N.A. Merino, B.P. Barbero, P. Grange, L.E. Cadús, J. Catal. 231, 232 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hitoshi Ogihara .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ogihara, H., Sadakane, M., Ueda, W. (2010). Synthesis and Applications of Mixed Oxide Nanotubes. In: Kijima, T. (eds) Inorganic and Metallic Nanotubular Materials. Topics in Applied Physics, vol 117. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-03622-4_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-03622-4_11

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-03620-0

  • Online ISBN: 978-3-642-03622-4

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics