Advertisement

Constrained Connectivity and Transition Regions

  • Pierre Soille
  • Jacopo Grazzini
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5720)

Abstract

Constrained connectivity relations partition the image definition domain into maximal connected components complying to a series of input constraints such as local and global intensity variation thresholds. However, they lead to a stream of small transition regions in situations where the edge between two large homogeneous regions spans over several pixels (ramp discontinuity). In this paper, we analyse this behaviour and propose new definitions for the notions of transition pixels and regions. We then show that they provide a suitable basis for suppressing connected components originating from non ideal step edges.

Keywords

Transition Region Local Extremum Logical Predicate Mathematical Morphology Grey Level Image 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Davey, B., Priestley, H.: Introduction to Lattices and Order, 2nd edn. Cambridge University Press, Cambridge (2002)CrossRefzbMATHGoogle Scholar
  2. 2.
    Zucker, S.: Region growing: childhood and adolescence. Computer Graphics and Image Processing 5, 382–399 (1976)CrossRefGoogle Scholar
  3. 3.
    Ronse, C.: Partial partitions, partial connections and connective segmentation. Journal of Mathematical Imaging and Vision 32, 97–125 (2008)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Brice, C., Fennema, C.: Scene analysis using regions. Artificial Intelligence 1, 205–226 (1970)CrossRefGoogle Scholar
  5. 5.
    Rosenfeld, A.: Fuzzy digital topology. Information and Control 40, 76–87 (1979)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Serra, J., Salembier, P.: Connected operators and pyramids. In: Dougherty, E., Gader, P., Serra, J. (eds.) Image Algebra and Morphological Image Processing IV. SPIE, vol. 2030, pp. 65–76 (1993)Google Scholar
  7. 7.
    Nagao, M., Matsuyama, T., Ikeda, Y.: Region extraction and shape analysis in aerial photographs. Computer Graphics and Image Processing 10, 195–223 (1979)CrossRefGoogle Scholar
  8. 8.
    Gower, J., Ross, G.: Minimum spanning trees and single linkage cluster analysis. Applied Statistics 18, 54–64 (1969)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Meyer, F., Maragos, P.: Morphological scale-space representation with levelings. In: Nielsen, M., Johansen, P., Olsen, O., Weickert, J. (eds.) Scale-Space 1999. LNCS, vol. 1682, pp. 187–198. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  10. 10.
    Zanoguera, F., Meyer, F.: On the implementation of non-separable vector levelings. In: Talbot, H., Beare, R. (eds.) Proceedings of VIth International Symposium on Mathematical Morphology, Sydney, Australia, Commonwealth Scientific and Industrial Research Organisation, pp. 369–377 (2002)Google Scholar
  11. 11.
    Everitt, B., Landau, S., Leese, M.: Cluster Analysis, 4th edn. Oxford University Press, Oxford (2001)zbMATHGoogle Scholar
  12. 12.
    Soille, P.: Constrained connectivity for hierarchical image partitioning and simplification. IEEE Transactions on Pattern Analysis and Machine Intelligence 30, 1132–1145 (2008)CrossRefGoogle Scholar
  13. 13.
    Soille, P.: On genuine connectivity relations based on logical predicates. In: Proc. of 14th Int. Conf. on Image Analysis and Processing, Modena, Italy, pp. 487–492. IEEE Computer Society Press, Los Alamitos (2007)Google Scholar
  14. 14.
    Arora, H., Ahuja, N.: Analysis of ramp discontinuity model for multiscale image segmentation. In: Proc. of 18th International Conference on Pattern Recognition, pp. 99–103. IEEE, Los Alamitos (2006)Google Scholar
  15. 15.
    Soille, P., Grazzini, J.: Advances in constrained connectivity. In: Coeurjolly, D., Sivignon, I., Tougne, L., Dupond, F. (eds.) DGCI 2008. LNCS, vol. 4992, pp. 423–433. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  16. 16.
    Baraldi, A., Parmiggiani, F.: Single linkage region growing algorithms based on the vector degree of match. IEEE Transactions on Geoscience and Remote Sensing 34, 137–148 (1996)CrossRefGoogle Scholar
  17. 17.
    Szczepanski, M., Smolka, B., Plataniotis, K., Venetsanopoulos, A.: On the distance function approach to color image enhancement. Discrete Applied Mathematics 139, 283–305 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Noyel, G., Angulo, J., Jeulin, D.: On distances, paths and connections for hyperspectral image segmentation. In: Banon, G., Barrera, J., Braga-Neto, U., Hirata, N. (eds.) Proceedings of International Symposium on Mathematical Morphology. São José dos Campos, Instituto Nacional de Pesquisas Espaciais (INPE), vol. 1, pp. 399–410 (2007)Google Scholar
  19. 19.
    Barnett, V.: The ordering of multivariate data (with discussion). Journal of the Royal Statistical Society (A) 139, 318–355 (1976)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Breen, E., Jones, R.: Attribute openings, thinnings, and granulometries. Computer Vision and Image Understanding 64, 377–389 (1996)CrossRefGoogle Scholar
  21. 21.
    Serra, J.: A lattice approach to image segmentation. Journal of Mathematical Imaging and Vision 24, 83–130 (2006)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Ronse, C.: Block splitting operators on (partial) partitions for morphological image segmentation. Technical report, Université Louis Pasteur, Strasbourg, France (2009)Google Scholar
  23. 23.
    Ronse, C.: A lattice-theoretical morphological view on template extraction in images. Journal of Visual Communication and Image Representation 7, 273–295 (1996)CrossRefGoogle Scholar
  24. 24.
    Crespo, J., Serra, J.: Morphological pyramids for image coding. In: Haskell, B., H.M. (eds.) Proc. Visual Communications and Image Processing. SPIE, vol. 2094, pp. 159–170 (1993)Google Scholar
  25. 25.
    Crespo, J., Schafer, R., Serra, J., Gratin, C., Meyer, F.: The flat zone approach: a general low-level region merging segmentation method. Signal Processing 62, 37–60 (1997)CrossRefzbMATHGoogle Scholar
  26. 26.
    Guimarães, S., Leite, N., Couprie, M., Araújo, A.: A directional and parametrized transition detection algorithm based on morphological residues. In: XV Brazilian Symposium on Computer Graphics and Image Processing, pp. 261–268 (2002)Google Scholar
  27. 27.
    Hodson, F., Sneath, P., Doran, J.: Some experiments in the numerical analysis of archaeological data. Biometrika 53, 311–324 (1966)CrossRefGoogle Scholar
  28. 28.
    Strong, J., Rosenfeld, A.: A region coloring technique for scene analysis. Communication of the ACM 16, 237–246 (1973)CrossRefGoogle Scholar
  29. 29.
    Brunner, D., Soille, P.: Iterative area filtering of multichannel images. Image and Vision Computing 25, 1352–1364 (2007)CrossRefGoogle Scholar
  30. 30.
    Adams, R., Bischof, L.: Seeded region growing. IEEE Transactions on Pattern Analysis and Machine Intelligence 16, 641–647 (1994)CrossRefGoogle Scholar
  31. 31.
    Soille, P.: Beyond self-duality in morphological image analysis. Image and Vision Computing 23, 249–257 (2005)CrossRefGoogle Scholar
  32. 32.
    Kramer, H., Bruckner, J.: Iterations of a non-linear transformation for enhancement of digital images. Pattern Recognition 7, 53–58 (1975)MathSciNetCrossRefzbMATHGoogle Scholar
  33. 33.
    Meyer, F., Serra, J.: Contrasts and activity lattice. Signal Processing 16, 303–317 (1989)MathSciNetCrossRefGoogle Scholar
  34. 34.
    Schavemaker, J., Reinders, M., Gerbrands, J., Backer, E.: Image sharpening by morphological filtering. Pattern Recognition 33, 997–1012 (2000)CrossRefGoogle Scholar
  35. 35.
    Poggio, L., Soille, P.: Land cover classification with unsupervised clustering and hierarchical partitioning. In: 11th Int. Conf. of the International Federation of Classification Societies (IFCS): Classification as a Tool for Research, Dresden (2009), http://www.ifcs2009.de
  36. 36.
    Grazzini, J., Soille, P.: Adaptive morphological filtering using similarities based on geodesic time. In: Coeurjolly, D., Sivignon, I., Tougne, L., Dupond, F. (eds.) DGCI 2008. LNCS, vol. 4992, pp. 519–528. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  37. 37.
    Grazzini, J., Soille, P.: Edge-preserving smoothing using a similarity measure in adaptive geodesic neighbourhoods. Pattern Recognition 42, 2306–2316 (2009), http://dx.doi.org/10.1016/j.patcog.2008.11.004 CrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Pierre Soille
    • 1
  • Jacopo Grazzini
    • 2
  1. 1.Institute for the Protection and the Security of the CitizenGlobal Security and Crisis Management UnitItaly
  2. 2.Institute for Environment and Sustainability Spatial Data Infrastructures UnitEuropean Commission, Joint Research CentreIspraItaly

Personalised recommendations