Skip to main content

Part of the book series: Landolt-Börnstein - Group I Elementary Particles, Nuclei and Atoms ((LANDOLT 1,volume 21B1))

  • 57 Accesses

Abstract

This document is part of Part 1 'Principles and Methods' of Subvolume B 'Detectors for Particles and Radiation' of Volume 21 'Elementary Particles' of Landolt-Börnstein - Group I 'Elementary Particles, Nuclei and Atoms'. It contains the Chapter '2 The Interaction of Radiation with Matter' with the content:

2 The Interaction of Radiation with Matter

2.1 Introduction

2.1.1 General concepts

2.1.2 Types of collisions

2.1.3 Observable effects of radiations

2.1.4 Stopping power dE/dx

2.2 Historical background

2.3 Description of the most frequent interactions of single fast charged particles

2.3.1 Narrow beams and straggling of heavy charged particles

2.3.2 Narrow beams of low energy electrons

2.3.3 Relation between track length and energy loss

2.3.4 Nuclear interactions

2.4 Photon interactions

2.4.1 Gases

2.4.2 Solids

2.4.3 Data for DOS

2.5 Interaction of heavy charged particles with matter

2.5.1 Inelastic scattering, excitation and ionization of atoms or condensed state matter

2.5.1.1 Bethe-Fano (B-F) method

2.5.1.2 Relativistic extension of B-F method

2.5.1.3 Fermi-virtual-photon (FVP) cross section

2.5.2 Integral quantities: moments

2.5.2.1 Comparison of moments: Si, Ne, P10

2.6 Electron collisions and bremsstrahlung

2.6.1 Electronic collisions

2.6.2 Bremsstrahlung BMS

2.7 Energy losses along tracks: multiple collisions and spectra

2.7.1 Monte Carlo method

2.7.2 Analytic methods

2.7.2.1 Convolutions

2.7.2.2 Laplace transforms

2.7.3 Analytic methods for thick absorbers

2.8 Evaluations and properties of straggling functions

2.8.1 Very thin absorbers

2.8.2 Thin absorbers

2.8.3 Thick absorbers

2.8.4 Comparisons of spectra

2.9 Energy deposition

2.9.1 Ionization

2.9.2 Delta rays

2.9.3 Auger electrons and photons

2.9.4 Cherenkov radiation

2.9.5 Transition radiation

2.9.6 Ion beams

2.10 Particle ID

2.11 Discussion and recommendations

2.12 Appendix

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Notes

  1. 1.

    Angular deflections will also occur. Nuclear spallation will not be considered.

  2. 2.

    Thermal effects [10, 11], photographic methods and track etching will not be further mentioned.

  3. 3.

    For ions with charge ze the mean free paths are divided by a factor z 2.

  4. 4.

    In a gas mixture such as Ne, CO2 and N2 used for the TPC in ALICE the excited states in Ne extend from 16.7 to 21.6 eV, well above the ionization potentials of the molecules (13.8 and 15.6 eV) and therefore can de-excite by ionizing the other molecules (Penning effect)[27]. Furthermore in measurements (of, e.g. stopping power and W, energy needed to produce one ion pair [29]) it is not possible to exclude the effects of the excitations.

  5. 5.

    A more detailed description can be found in Chapter 5 of [27].

  6. 6.

    Additional factors for electrons and positrons and for particles with spin \frac{1}_ {2} and spin 1 at high speeds (β ∼ 1) are given e.g. in Uehling [48]. An extensive description can be found in Evans [8].

  7. 7.

    A description of the derivation of “Bethe stopping power”, Appendix A.1, can be found in [53].

  8. 8.

    For particle speeds β < 0. 1 this approximation will cause errors, especially for M 0.

  9. 9.

    The effect of the approximation can be seen in Fig. 2.9: for E < 20 eV the FVP σ(E) exceeds the B-F value considerably, resulting in the larger value of M 0 in Tables 2.1, 2.3 and 2.4.

  10. 10.

    See Eqs. 2-4 in Uehling [48].

  11. 11.

    For gases, ε 2 and ε 1 − 1 are proportional to the gas pressure p, therefore from Eq. (2.24) we must expect that the straggling function for a segment of length x 1 p 1 will differ from that of a segment of length x 2 p 2 even if x 1 p 1 = x 2 p 2 [61, Fig. 1.20].

  12. 12.

    The difference is caused by the approximation shown in Fig. 2.8.

  13. 13.

    B-F M 1 differed by less than ± 0. 5% from experimental measurements [33, 54].

  14. 14.

    Calculations have also been made for several other gases, but are not given here. Optical data used are described in Sect. 2.4.1.

  15. 15.

    Especially important is he choice of a cut-off energy E m for the Rutherford spectrum, Eq. (2.8), since R M 0 = k′ / E m , Appendix B.1.

  16. 16.

    In many publications it is customary to write the particle kinetic energy as E, then the stopping power is dE / dx. Since the expression for σ(E; v) does not contain corrections equivalent to the Barkas and Bloch corrections, these names here are not included in the name for the stopping power. On the other hand, Fano [19] formulated the expression for solids given in Eq. (2.21).

  17. 17.

    A further factor F e (T, u), u = E / T, is approximated by 1 here [9, 23, 51, 67, 68].

  18. 18.

    The electronic energy loss Δ within a distance λ is much larger than E l , thus BMS losses below 100 eV will contribute negligibly to Δ (“infrared divergence”).

  19. 19.

    For the Rutherford cross section these function are shown in [57].

  20. 20.

    For condensed history MC calculations Landau or Vavilov functions [2, 3, 75] are used frequently [76]. Attention must be paid to the condition for the applicability of these functions described, in Sect. 2.7.3.

  21. 21.

    For a single particle track the only possible description is that shown in Fig. 2.1.

  22. 22.

    For m c = 20, about 40 functions of Eq. (2.34) would be needed.

  23. 23.

    Current programs [54] work well for 〈Δ〉 < 5 MeV or 〈Δ〉 < T / 20. One function is calculated in less than 1 s.

  24. 24.

    For an assessment of the validity of Vavilov functions, the reader may wish to look at Fig. 2.14 in [33]. In general Vavilov-Fano calculations will agree with convolutions for κ > 0. 02.

  25. 25.

    Analytic methods to determine straggling for various analytic single collision spectra are described in great detail in the book by Sigmund [45].

  26. 26.

    For present purposes (e.g. total range of 200 MeV protons [46] or 3000 MeV C-ions [77] in water) Vavilov-Fano straggling functions V are used.

  27. 27.

    The measurements by Perez et al. [7] were made with electrons in Al and agree qualitatively with Fig. 2.23. This paper is an interesting example of the problems of analytic methods.

  28. 28.

    More specific indications about the use of Landau functions can be seen in Fig. 2 of [6], Fig. 15 of [33], Fig. 91.6 of [73].

  29. 29.

    The Vavilov program is about four times faster than the convolution program, which takes 0.7 sec (1.7 GHz machine) for one calculation with Eq. (2.37).

  30. 30.

    The mean track length of a particle beam is frequently called the csda range. The projected range is the mean distance traveled by the particles along the incident direction of the beam.

  31. 31.

    Calibrations with radioactive sources can be used as corroboration.

  32. 32.

    In the literature various symbols such as w, ε are also used.

  33. 33.

    In ref. [55] Θ is given as Θ = arg(1 − ε 1 β 2 + i ε 2 β 2).

  34. 34.

    For the Vavilov [3] result this will result in the correct mean value for the straggling functions if the number of collisions is large enough, Fig. 2.14 in [33].

  35. 35.

    D corresponds to the term \(\bar{{K}_{r}^{2}}\) in [113] and δ 2 [33].

2 References for 2

  1. N. Bohr, Philos. Mag. xxv (1913) p. 10, and Philos. Mag. xxx (1915) p. 581.

    Google Scholar 

  2. L. Landau, J. Phys. VIII (1944) 201.

    Google Scholar 

  3. P.V. Vavilov, Sov. Phys. JETP 5 (1957) 749.

    Google Scholar 

  4. F. Sauli, Nucl. Instrum. Meth. A 580 (2007) 971, and Annu. Rev. Nucl. Part. Sci. 49 (1999) 341.

    Article  ADS  Google Scholar 

  5. C. Brion - http://www.chem.ubc.ca/personnel/faculty/brion/

  6. H. Bichsel, R.P. Saxon, Phys. Rev. A 11 (1975) 1286.

    Article  ADS  Google Scholar 

  7. J.Ph. Perez, J. Sevely, B. Jouffrey, Phys. Rev. A 16 (1977) 1061.

    Article  ADS  Google Scholar 

  8. R.D. Evans, The Atomic Nucleus, McGraw Hill (1967).

    Google Scholar 

  9. D.E. Groom, N.V. Mokhov, S.I. Striganoff, Atomic Data and Nucl. Data Tables 78 (2001) 183.

    Article  ADS  Google Scholar 

  10. H.H. Andersen, C.C. Hanke, H. Sorensen, P. Vajda, Phys. Rev. 153 (1967) 338.

    Article  ADS  Google Scholar 

  11. A. Giuliani, S. Sanguinetti, Mater. Sci. Eng. R 11 (1993) 1.

    Article  Google Scholar 

  12. H. Bichsel, Nucl. Instrum. Meth. A 562 (2006) 154-197.

    Article  ADS  Google Scholar 

  13. M. Harrison, T. Ludlam, S. Ozaki (eds.), Nucl. Instrum. Meth. A 499 (2006) 1-880.

    Google Scholar 

  14. C. Tschalär, H. Bichsel, Phys. Rev. 175 (1967) 476, and C.Tschalär, Ph.D. dissertation, University of Southern California, 1967.

    Google Scholar 

  15. H.H. Andersen, J.F. Bak, H. Knudsen, B.R. Nielsen, Phys. Rev. A 16 (1967) 338.

    Google Scholar 

  16. N. Shiomi-Tsuda, N. Sakamoto, H. Ogawa, U. Kitoba, Nucl. Instrum. Meth. B 159 (1999) 123.

    Article  ADS  Google Scholar 

  17. J.J. Thomson, Philos. Mag. xxiii (1912) 449.

    Google Scholar 

  18. H. Bethe, Ann. Phys. 5 (1930) 325.

    Article  Google Scholar 

  19. U. Fano, Annu. Rev. Nucl. Sci. 13 (1963) 1.

    Article  ADS  Google Scholar 

  20. http://physics.nist.gov/PhysRefData/Star/Text/contents.html

  21. E. Fermi, Z. Phys. 29 (1924) 3157, and Nuovo Cimento 2 (1925) 143.

    Google Scholar 

  22. K. Ohya, I. Mori, J. Phys. Soc. Japan 60 (1991) 4089.

    Article  ADS  Google Scholar 

  23. Review of Particle Physics, J. Phys. G 37 (2010) 075021, and http://pdg.lbl.gov.

  24. Z. Chaoui, Appl. Phys. Let. 88 (2006) 024105, and Z. Chaoui, H. Bichsel, Surf. Interface Anal. 86 (2006) 664.

    Article  ADS  Google Scholar 

  25. N.J. Carron, An Introduction to the Passage of Energetic Particles through Matter, Taylor and Francis (A division of Harcourt) 2002.

    Google Scholar 

  26. F.H. Attix, Wm.C. Roesch (eds), Radiation Dosimetry, 2nd ed., Academic Press, New York, London (1968).

    Google Scholar 

  27. Atomic and molecular data for radiotherapy and radiation research, Final report of a co-ordinated research programme, IAEA-TECDOC-799, May 1995, IAEA Vienna.

    Google Scholar 

  28. B.J. Bloch, L.B. Mendelsohn, Phys. Rev. A 9 (1974) 129.

    Article  ADS  Google Scholar 

  29. ICRU report 31, Average energy required to produce an ion pair, Int. Commission on Radiation Units, 7910 Woodmont Ave., Washington D.C. 20014 (1979).

    Google Scholar 

  30. U. Fano, J.W. Cooper, Rev. Mod. Phys. 40 (1968) 441.

    Article  ADS  Google Scholar 

  31. J. Berkowitz, Atomic and molecular photo absorption, Academic Press (A division of Harcourt) 2002.

    Google Scholar 

  32. M.C. Walske, Phys. Rev. 101 (1956) 940, and Phys. Rev. 88 (1952) 1283.

    Article  ADS  Google Scholar 

  33. H. Bichsel, Rev. Mod. Phys. 60 (1988) 663.

    Article  ADS  Google Scholar 

  34. J.M. Fernandez-Varea, F. Salvat, M. Dingfelder, D. Liljequist, Nucl. Instrum. Meth. B 229 (2005) 187-217.

    Article  ADS  Google Scholar 

  35. D.Y. Smith, M. Inokuti, W. Karstens, E. Shiles, Nucl. Instrum. Meth. B 250 (2006) 1.

    Article  ADS  Google Scholar 

  36. W. Zhang, G. Cooper, T. Ibuki, C.E. Brion, Chem. Phys. 137 [1989] 391.

    Google Scholar 

  37. L.C. Lee, E. Phillips, D.L. Judge, J. Chem. Phys. 67 [1977] 1237.

    Article  ADS  Google Scholar 

  38. I. Smirnov, projects-CF4-HEED cf4photoabs.dat, http://ismirnov.web.cern.ch/ismirnov/heed, e-mail: igor.smirnov@cern.ch

  39. S. Kamakura et al., J. Appl. Phys. 100 (2006) 064905.

    Article  ADS  Google Scholar 

  40. G.F. Bertsch, J.-I. Iwata, A. Rubio, K. Yabana, Phys.Rev. B 62 (2000) 7998.

    Article  ADS  Google Scholar 

  41. J.J. Rehr, R.C. Albers, Rev. Mod. Phys. 72 (2000) 621.

    Article  ADS  Google Scholar 

  42. E.D. Palik, Handbook of optical constants of solids, three volumes, Academic Press, New York, 1985, 1991, and 1998.

    Google Scholar 

  43. H. Bichsel, Passage of Charged Particles Through Matter, Ch. 8d in: Amer. Instrum. Phys. Handbook, 3rd ed., D.E. Gray (ed.), McGraw Hill (1972).

    Google Scholar 

  44. C. Leroy, P.-G. Rancoita, Principles of Radiation Interaction in Matter and Detection, World Scientific (2004).

    Google Scholar 

  45. P. Sigmund, Particle Penetration and Radiation Effects, Springer (2006).

    Google Scholar 

  46. I. Gudowska, private communication (2009).

    Google Scholar 

  47. Ch. Tschalär, Nucl. Instrum. Meth. 61 (1968) 141.

    Article  ADS  Google Scholar 

  48. E.A. Uehling, Penetration of of heavy charged particles in matter, Annu. Rev. Nucl. Sci. 4 (1954) 315.

    Article  ADS  Google Scholar 

  49. E. Fermi, Phys. Rev. 57 (1940) 485.

    Article  ADS  Google Scholar 

  50. D. Bote, F. Salvat, Phys. Rev. A 77 (2008) 042701.

    Article  ADS  Google Scholar 

  51. ICRU report 37, Stopping Power of electrons and Positrons, Int. Commission on Radiation Units and Measurements, 7910, Woodmont Ave., Bethesda, MD 20814. Washington D.C. 20014 (1979).

    Google Scholar 

  52. M. Inokuti, Rev. Mod. Phys, 43, 297 (1971), and 50, 23 (1978).

    Article  ADS  Google Scholar 

  53. H. Bichsel, Phys. Rev. A 65 (2002) 052709, Phys. Rev. A 46 (1992) 5761, and Phys. Rev. A 23 (1982) 253.

    Article  ADS  Google Scholar 

  54. H. Bichsel, http://faculty.washington.edu/hbichsel

  55. W.W.M. Allison, J.H. Cobb, Annu. Rev. Nucl. Part. Sci. 30 (1980) 253.

    Article  ADS  Google Scholar 

  56. D. Liljequist, J. Phys. D 16 (1983) 1567.

    Article  ADS  Google Scholar 

  57. E.J. Williams, Proc. Roy. Soc. A 125 (1929) 420.

    Article  ADS  Google Scholar 

  58. H. Bichsel, Scanning Microscopy Suppl. 4 (1990) 147. The values of M 0 are in units of collisions/10nm (not collisions/μm).

    Google Scholar 

  59. J.W. Gallagher, C.E. Brion, J.A.R. Samson, P.W. Langhoff, J. Phys. Chem. Ref. Data 17 (1988) 9.

    Article  ADS  Google Scholar 

  60. H. Raether, Excitation of plasmons and interband transitions by electrons, Springer Verlag, New York (1980).

    Google Scholar 

  61. W. Blum, L. Rolandi, Particle Detection with Drift Chambers, second printing, Springer-Verlag (1994), and W. Blum, L. Rolandi, M. Regler, third printing, Springer-Verlag (2007).

    Google Scholar 

  62. ALICE Technical Design Report of the Time Projection Chamber, CER/LHCC 2000-001, ALICE TDR 7 (7 January 2000).

    Google Scholar 

  63. H. Bichsel, Phys. Rev. B 1 (1970) 2854.

    Article  ADS  Google Scholar 

  64. H. Bichsel, Nucl. Instrum. Meth. B 52 (1990) 136.

    Article  ADS  Google Scholar 

  65. ICRU report 49, Stopping Powers and Ranges for Protons and Alpha Particles, Int. Commission on Radiation Units and Measurements, 7910 Woodmont Ave., Bethesda, MD 20814 (1993).

    Google Scholar 

  66. F. Salvat, J.M. Fernandez-Varea, Metrologia 46 (2009) S112.

    Article  ADS  Google Scholar 

  67. W. Heitler, The Quantum Theory of Radiation, second edition, Oxford University Press (1949).

    Google Scholar 

  68. A.N. Kalinovskii, N.V. Mokhov, Yu.P. Nikiyin, Passage of High-Energy Particles through Matter, American Institute of Physics, New York (1989).

    Google Scholar 

  69. A.M. Kellerer, G.S.F. Bericht B-1, Strahlenbiologisches Institut der Universität München (1968).

    Google Scholar 

  70. J.R. Herring, E. Merzbacher, J. Elisha Mitchell Sci. Soc. 73 (1957) 267.

    Google Scholar 

  71. J.J. Kolata, T.M. Amos, H. Bichsel, Phys. Rev. 176 (1968) 484.

    Article  ADS  Google Scholar 

  72. J.F. Bak et al., Nucl. Phys. B 288 (1987) 681

    Article  ADS  Google Scholar 

  73. H. Bichsel, Charged-Particle-Matter Interactions, Ch. 91 in: Springer Handbook of Atomic, Molecular, and Optical Physics, G.W.F. Drake (ed.), 2nd ed., Springer (2006).

    Google Scholar 

  74. I. Gudowska et al., Phys. Med. Biol. 49 (2004) 1933, and I. Gudowska, N. Sobolevsky, Radiation Measurements 41 (2006) 1091.

    Article  Google Scholar 

  75. M.J. Berger, S.M. Seltzer, Studies in penetration of charged particles in matter, Nat. Acad. Sci.-Nat. Res. Council Publ. 1133 (1964).

    Google Scholar 

  76. M.J. Berger, Monte Carlo Calculations of the Penetration and Diffusion of Fast Charged Particles, Meth. Comput. Phys. 1 (1963) 135.

    Google Scholar 

  77. H. Bichsel, T. Hiraoka, K. Omata, Rad. Res. 153 (2000) 208.

    Article  Google Scholar 

  78. H. Bichsel, Adv. Quantum Chem. 46 (2004) 329.

    Article  ADS  Google Scholar 

  79. H.W. Lewis, Phys. Rev. 125 (1962) 937.

    Article  ADS  Google Scholar 

  80. W. Boersch-Supan, J. Res. Nat. Bur. Stand. 65B (1961) 245.

    Google Scholar 

  81. B. Rossi, High-Energy Particles, Prentice Hall, Inc. Englewood Cliffs, N.J. (1952).

    Google Scholar 

  82. C. Tschalär, H.D. Maccabee, Phys. Rev. B 1 (1970) 2863.

    Article  ADS  Google Scholar 

  83. Y. Fisyak, private communiaction (2008).

    Google Scholar 

  84. R. Brun et al., ROOT - An Object Oriented Data Analysis Framework, Nucl. Instrum. Meth. A 389 (1997) 81. See also http://root.cern.ch

  85. H. Bichsel, Proc. Ninth Symposium on Microdosimetry (May, 1985), Rad. Prot. Dosimetry 13 (1985) 91.

    Google Scholar 

  86. M. Pfützner et al., Nucl. Instrum. Meth. B 86 (1994) 213.

    ADS  Google Scholar 

  87. D. Combecher, Radiat. Res. 84 (1980) 189.

    Article  Google Scholar 

  88. H. Bichsel, M. Inokuti, Radiat. Res. 67 (1976) 613.

    Google Scholar 

  89. L.V. Spencer, The theory of electron penetration, Phys. Rev. 98 (1955) 1597, and Energy deposition by fast electrons, Nat. Bur. Std. (U.S), Monograph 1 (195*).

    MATH  Google Scholar 

  90. E.J. Kobetich, R. Katz, Phys. Rev. 170 (1968) 391.

    Article  ADS  Google Scholar 

  91. E. Waibel, B. Grosswendt, Stopping power and energy range relation for low energy electrons in nitrogen and methane, 7th Symposium on Microdosimetry, 8-12 September 1980, Oxford/UK, EUR 7147 (Commission of European Communities).

    Google Scholar 

  92. B.G.R. Smith, J. Booz, Experimental results on W-values and transmission of low energy electrons in gases, 6th Symposium on Microdosimetry, Brussels, Belgium, May 22-26, 1978, EUR 6064 (Commission of European Communities).

    Google Scholar 

  93. W. Bambynek et al., Rev. Mod. Phys 44 (1972) 716.

    Article  ADS  Google Scholar 

  94. V. Grichine, Nucl. Instrum. Meth. A 453 (2000) 597.

    Article  ADS  Google Scholar 

  95. A. Crispin, G.N. Fowler, Rev. Mod. Phys. Rev. 42 (1970) 290.

    Article  ADS  Google Scholar 

  96. B. Dolgoshein, Nucl. Instrum. Meth. A 326 (1993) 434.

    Article  ADS  Google Scholar 

  97. H. Bichsel, T. Hiraoka, Nucl. Instr. Meth. B 66 (1992) 345.

    ADS  Google Scholar 

  98. H. Bichsel, E.A. Uehling, Phys. Rev. 119 (1960) 1670.

    Article  ADS  Google Scholar 

  99. H. Bichsel, K.M. Hanson, M.E. Schillaci, Phys. Med. Biol. 27 (1982) 959.

    Article  Google Scholar 

  100. S. Agostinelli et al., GEANT 4 - a simulation toolkit, Nucl. Instrum. Meth. A 506 (2003) 250.

    Article  ADS  Google Scholar 

  101. H. Bichsel, Phys. Rev. A 41 (1990) 3642.

    Article  ADS  Google Scholar 

  102. A.H. Soerensen, Nucl. Instrum. Meth. B 264 (2007) 240.

    Article  ADS  Google Scholar 

  103. S.P. Ahlen, Rev. Mod. Phys. 52 (1980) 121.

    Article  ADS  Google Scholar 

  104. J. Lindhard, A.H. Soerensen, Phys. Rev. A 53 (1996) 2443.

    Article  ADS  Google Scholar 

  105. M. Inokuti, R.P Saxon, J.L. Dehmer, Int. J. Radiat. Phys. Chem., 7 (1975) 109.

    Article  Google Scholar 

  106. M. Inokuti, D.Y. Smith, Phys. Rev. B 25 (1982) 61.

    Article  ADS  Google Scholar 

  107. R.P. Saxon, Phys. Rev. A 8 (1973) 839.

    Article  ADS  Google Scholar 

  108. H. Bichsel, Phys. Rev. 120 (1960) 1012.

    Article  ADS  Google Scholar 

  109. H. Bichsel, T. Hiraoka, Int. J. Quantum Chemistry Quantum Chem. Symp. 23 (1989) 565.

    Google Scholar 

  110. H. Bichsel, Nucl. Instrum. Meth. A 565 (2006) 1.

    Article  ADS  Google Scholar 

  111. I. Lehraus, R. Matthewson, W. Tejessy, IEEE Trans. Nucl. Sci. NS-30 (1983) 50.

    Article  ADS  Google Scholar 

  112. P. Christiansen, private communication (2008).

    Google Scholar 

  113. O. Blunck, S. Leisegang, Z. Phys. 128 (1950) 500.

    Article  ADS  Google Scholar 

  114. O. Blunck, K. Westphal, Z. Phys. 130 (1951) 641.

    Article  ADS  Google Scholar 

  115. P. Shulek et al., Sov. J. Nucl. Phys. 4 (1967) 400

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Appendices

2.12 Appendix

A Stopping power and track length

A.1 Stopping power M 1

Bethe [18] derived the method described in Sects. 2.5.1.1 and 2.5.1.2. for atoms and calculated the first moment M 1(v), Eq. (2.25), by using sum rules and defining the logarithmic mean excitation energyI. The nonrelativistic result is [53]

$$\frac{dE} {dx} \equiv {M}_{1}(v) = \frac{kN} {{\beta }^{2}} Z\ln \frac{{E}_{M} \cdot 2m{c}^{2}{\beta }^{2}} {{I}^{2}}$$
(2.41)

with I given by

$$Z\ln I = \int \nolimits \nolimits f(E,0)\ln E\ dE$$
(2.42)

It must be kept in mind that dE / dx is an average of the energy losses per unit segment length for single particles, Δ / x, as shown in Fig. 2.1. From Fig. 2.22-2.25 it is evident that dE / dx has a limited use for thin absorbers.

The use of the sum rules introduces an error which can be corrected with the shell corrections [53]. Other effects are treated with the Barkas and Bloch corrections etc. [101, 102, 103, 104]. The density effect, Cherenkov radiation etc. are implicit in Eq. (2.21), Sect. 2.9.4 [19].

In practice there will be little need to calculate M 1(v) for the uses described in this book. Tables for protons and alpha particles for many absorbers are available [20, 65], also for muons [9].

A concept often used in particle physics is “minimum ionizing particles”. This usually refers to the minimum value of M 1(β γ). For Si this minimum is at β γ ∼ 3. 5, but for Σ t = M 0 it is at β γ ∼ 16, and for Δ p / x it is at β γ ∼ 4. 5 (Table 2.1), for gases near β γ ∼ 3. 5, Table 2.2.

Stopping power for electrons and positrons need a different analytic expression than heavy ions. Equations and tables are given in ICRU-37 [51], also see Sect. 2.6.

A.2 Total collision cross section M 0

Analytic calculations for M 0 with the Bethe-Fano equations given in Sects. 2.5.1.1 and 2.5.1.2 have been made [27, 52, 105, 106, 107]. Because of the complexity of the optical data, no simple expression similar to Eq. (2.41) is available. The analytic calculations differ considerably from the FVP calculations, Sect. 2.5.2.1. Calculations of M 0 (also called inverse mean free path) have been made by several groups [20] (ORNL, Barcelona) with computer-analytic methods.

A.3 Restricted energy loss

The concept of restricted energy loss was introduced in the consideration of biological effects of radiations. Conceptually it is an energy deposition rather than an energy loss and therefore must be defined for a limited volume around a particle track. The customary definition, Eq. (27.9) in [23]

$${M}_{1}(v) \approx \frac{k} {{\beta }^{2}}{z}^{2}Z\ \frac{1} {2}\ln \frac{{E}_{cut} \cdot 2m{c}^{2}{\beta }^{2}{\gamma }^{2}} {{I}^{2}}$$
(2.43)

is valid for a cylindrical volume around the track with a radius given by the practical range of electrons with energy E cut , see Table 2.6, Sect. 2.9.2. Because of the small number of energetic delta rays, Fig. 2.15, a MC calculation should be used for practical applications [54].

A.4 Ranges

Mean track lengths t (also called path lengths) for particles with initial kinetic energy T u and final mean energy T l can be calculated with the “CSDA approximation”

$$t ={ \int \nolimits \nolimits }_{{T}_{l}}^{{T}_{u} } \frac{dT'} {dT'/dx}$$
(2.44)

where dT / dx represents M 1(v) of Eq. (2.41). Customarily if T l = 0, t is called the particle range. Corrections for multiple scattering must be considered [98, 108], and nuclear interactions will reduce the particle fluence, see Sect. 2.3.4. Range data for muons can be found in [9], for pions, protons and alpha particles in [53, 65].

If T l is finite, there will be an energy spectrum [77, 109] which does not correlate well with the track-straggling, see Fig. 2.4, Sect. 2.3.3.

Fig. 2.4
figure 4_2

The dashed line gives the pdf of energy losses Δ in Ne for a segment length x = 9 cm for 500,000 particles as described in Fig. 2.1, Δ = (sc/10) keV. The peak value is at about 8.5 keV, the FWHM is 4.6 keV. The solid line gives the pdf of the segment length x = sc mm of particles which lost Δ ≤ 9 keV, as described in Fig. 2.3. The peak is at 86 mm. The two functions have opposite asymmetry, and they have no correlation. It will be difficult to compare the functions by using “stopping power”. It may be possible to measure these spectra with a GEM TPC [4, 23]. The quotient of the peaks is 1 keV/cm, much less than M 1 = 1. 6 keV/cm.

B Rutherford type cross sections

B.1 Rutherford cross section and moments

The Rutherford cross section is given by Eq. (2.8). In order to calculate the moments, Eq. (2.25), integration limits must be defined. The upper limit must be E M given in Eq. (2.2), a lower limit E m , defined e.g. in Appendix B.4, is used.

$${M}_{0}(v) = \frac{k'} {{\beta }^{2}}\left [( \frac{1} {{E}_{m}} - \frac{1} {{E}_{M}}) - \frac{{\beta }^{2}} {{E}_{M}}\ln \frac{{E}_{M}} {{E}_{m}} \right ] \sim \frac{k'} {{\beta }^{2}} \frac{1} {{E}_{m}}$$
(2.45)
$${M}_{1}(v) = \frac{k'} {{\beta }^{2}}\left [\ln \frac{{E}_{M}} {{E}_{m}} - \frac{{\beta }^{2}} {{E}_{M}}({E}_{M} - {E}_{m})\right ] \sim \frac{k'} {{\beta }^{2}}\left [\ln \frac{{E}_{M}} {{E}_{m}} - {\beta }^{2}\right ]\ =\ \frac{k'} {{\beta }^{2}}\left [\ln \frac{{E}_{M}^{2}} {{I}^{2}} - {\beta }^{2}\right ]\ $$
(2.46)

From Figs. 2.9-2.11 it is clear that no plausible values of E m can be defined from knowledge about atomic structure.

$${M}_{2}(v) = \frac{k'} {{\beta }^{2}}\left [({E}_{M} - {E}_{m}) - \frac{{\beta }^{2}} {2{E}_{M}}({E}_{M}^{2} - {E}_{ m}^{2})\right ] \sim k' \cdot 2m{c}^{2}\ \frac{1 - {\beta }^{2}/2} {1 - {\beta }^{2}}$$
(2.47)

where k′ = kN A Z / A = 0. 1535 Z / A MeV cm2/g for an absorber Z, A.

The Landau [2] method to deal with E m is given in Sect. B.4.

B.2 Rutherford cross section with shell structure

Inokuti [52] suggested an approximation by modifying the Rutherford cross section for each electron shell s with ν s electrons as follows:

$${\sigma }_{\mathrm{s}}(E) = {\sigma }_{R}(E) \cdot {\nu }_{s} \cdot (1\ +\ \frac{4U} {3E})$$
(2.48)

to be used for EJ s where J s is the ionization energy of shell s and with a parameter U similar to the average kinetic energy of the electrons in the shell. An application of this approach is described in Sect. III.B of [33]. This structure appears in Fig. 2.9 at least for the K-shell. It is likely that the use of this approximation would improve the FVP method shown in Fig. 2.8 and Eq. (2.24), see ref. [34].

B.3 Modified Rutherford cross section

In the “ALICE Technical Design Report of the Time Projection Chamber” [62], a modified Rutherford cross section was used, “AliRoot MC”

$${\sigma }_{\mathrm{A}}(E;v) = \frac{\kappa (v)} {{\beta }^{2}{E}^{2.2}}$$
(2.49)

with the restriction E I < E < E u, where E I is the ionization energy of the gas and E u is chosen arbitrarily to be 10 keV. κ(v) is a parameter chosen to give the value Σt(β γ = 3. 6) = 15 collisions/cm as suggested in [62, Fig. 7.1]. This cross section is shown by the dotted line in Fig. 2.11 and κ(v) / E 2. 2 appears to be a reasonable approximation to the FVP σ(E; v). Note that the Rutherford cross section differs by its slope. The exact choice of E u is not critical as the reader may find by calculating Σt;A with Eq. (2.45). Further details are described in [54, 110].

To get a better approximation for Σt(v) for the scheme proposed in [62] the “Bethe-Bloch curve” was used to define the function Σt;A(v). This function was obtained from measurements of particle tracks in P10 (mainly by Lehraus et al., [111]). It is approximated by

$$f(\beta \gamma )\ =\ \frac{{P}_{1}} {{\beta }^{{P}_{4}}} \ \{{P}_{2} - {\beta }^{{P}_{4} } -\ln [{P}_{3} + \frac{1} {{(\beta \gamma )}^{{P}_{5}}} ]\}$$
(2.50)

and is shown as L[P10] in Fig. 2.16. Clearly this function also differs substantially from Σt;F(v). In addition it differs conceptually from Σt(v). The reason for the difference is that Eq. (2.50) was determined from experimental measurements of truncated mean values < C > for tracks. It also differs from the Bethe-Fano function M 1(β γ) = dE / dx(β γ) shown in Fig. 2.16.

Monte Carlo calculations of straggling functions with the model of ref. [62] are compared to the analytic calculation with FVP σ(E) in Fig. 2.27. The differences seen are explained by the differences in the σ(E), Fig. 2.11. Predominant is the excess of σ(E) over σ A(E) for 30 < E(eV ) < 300 resulting in the shift to greater Δ of the FVP function.

Fig. 2.27
figure 27_2

Straggling functions for particles with β γ = 3. 6 traversing Ne segments with x = 7. 5 mm. Solid line: analytic FVP calculation, Σt = 13. 3 collisions/cm. × Monte Carlo calculation with ALICE TPC algorithm, with Σt = 15/cm. Even though the Σt is somewhat larger, the MC calculation has a smaller Δ p . A Monte Carlo calculation with FVP σ(E) gives the same function as the analytic calculation [54]. The K-shell energy losses above Δ = 1. 3 keV do not appear in the MC calculation.

We see that the AliRoot [62] Monte Carlo calculation does not produce accurate straggling functions. Its attractiveness is that the functions used are analytic.

A modified approach which is just as simple as the current method but will produce more accurate straggling functions consists of

  • replacing in Fig. 2.16 the function L[P10] by Σt[Ne]

  • replacing in Fig. 2.14 the function given by the dotted line (from Eq. (2.49) by the FVP functions. A single tabulated function might be sufficient [54, 112].

B.4 Landau-Vavilov-Fano Laplace transform method

The straggling functions calculated by Landau and Vavilov [2, 3] were based on two approximations: the use of the Rutherford spectrum, Eq. (2.8), for the collision cross section and the requirement that the stopping power, Eq. (2.46), (written as α, Eq. 4 in [2]) give the Bethe stopping power, Eq. (2.41). In order to achieve this, E m was chosen as Footnote 34

$${E}_{m} = \frac{{I}^{2}} {{E}_{M}}$$
(2.51)

The value for M 0 then is \(M_0^\prime = \frac{k^\prime}{\beta^2} \cdot \frac{I^2}{E_M}\). It is larger than the Bethe-Fano value.

Example: Ar, β γ = 3. 6 β 2 = 0. 93, I = 190 eV, ρ = 0. 0016 g/cm3, k′ / β 2 = 120 eV/cm. Then E m = 0. 0027 eV, M 0 = 44000 col/cm and M 1 = 2. 5 keV/cm. Clearly M 0 is much greater than given in Table 2.2, while M 1 is quite close. This is plausible from a look at Fig. 2.10. Since the convolution method, Eq. (2.32), is equivalent to the Laplace transform method [6], the relative variance of the Poisson distribution, m c − 1 / 2, as well as that of the convolutions, Fig. 2.18, will be much smaller for the Rutherford cross section, and the Landau functions are narrower, as seen in Fig. 2.24.

Functions calculated with modifications taking atomic binding into account [19, 113, 114, 115] are too wide, Fig. 2.14 in [33]. The calculation of the correction term D in [115] Footnote 35 is incorrect. The correct term is given by Fano (p. 42 in [19]), [33]. If account is taken of the limit on E in Eq. (2.34) (E must be smaller than Δ in the calculation of δ 2 [33]) the Vavilov-Fano functions are fair approximations for thin absorbers, Figs. 11-13 in ref. [33].

As far as calculation time is concerned it is similar for the convolution calculation. Because the mean energy loss ξ is used as a parameter this method has the advantage that it will be quite accurate for thicker segments. Because of the change in particle speed v, the upper limit of validity of all thin layer methods is reached if the mean energy loss exceeds 5 or 10%, see Fig. 2 of [47].

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bichsel, H. (2011). The Interaction of Radiation with Matter. In: Fabjan, C.W., Schopper, H. (eds) Detectors for Particles and Radiation. Part 1: Principles and Methods. Landolt-Börnstein - Group I Elementary Particles, Nuclei and Atoms, vol 21B1. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-03606-4_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-03606-4_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-03605-7

  • Online ISBN: 978-3-642-03606-4

Publish with us

Policies and ethics