Advertisement

Method of Generating Differentials

  • I-Chiau Huang
Conference paper

Abstract

Enhancing the method of generating functions and the method of coefficients, various notions of differentials are brought in so that computations resulting Jacobians from changes of variables become transparent. Here we present modules of differentials for rings of formal power series and for fields of generalized power series. Local cohomology residues and logarithmic residues are reviewed with implementations on classical problems.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    I. A. Aĭzenberg and A. P. Yuzhakov. Integral representations and residues in multidimensional complex analysis. American Mathematical Society, Providence, R.I., 1983. MATHGoogle Scholar
  2. 2.
    C. A. Berenstein and A. Yger. Residue calculus and effective Nullstellensatz. Amer. J. Math., 121(4):723–796, 1999. MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    J.-Y. Boyer and M. Hickel. Une généralisation de la loi de transformation pour les résidus. Bull. Soc. Math. France, 125(3):315–335, 1997. MATHMathSciNetGoogle Scholar
  4. 4.
    J.-Y. Boyer and M. Hickel. Extension dans un cadre algébrique d’une formule de Weil. Manuscripta Math., 98(2):195–223, 1999. MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    W. Bruns and J. Herzog. Cohen-Macaulay Rings. Cambridge University Press, 1993. Google Scholar
  6. 6.
    F. J. Dyson. Statistical theory of the energy levels of complex systems. I. J. Mathematical Phys., 3:140–156, 1962. CrossRefMathSciNetGoogle Scholar
  7. 7.
    G. P. Egorychev. Inversion of one-dimensional combinatorial relations. In Some questions on the theory of groups and rings (Russian), pages 110–122, 176. Inst. Fiz. im. Kirenskogo Sibirsk. Otdel. Akad. Nauk SSSR, Krasnoyarsk, 1973. Google Scholar
  8. 8.
    G. P. Egorychev. The inversion of combinatorial relations. Kombinatornyĭ Anal., (Vyp. 3):10–14, 1974. Google Scholar
  9. 9.
    G. P. Egorychev. Integral Representation and the Computation of Combinatorial Sums, volume 59 of Translation of Mathematical Monographs. American Mathematical Society, 1984. Google Scholar
  10. 10.
    G. P. Egorychev and E. V. Zima. Decomposition and group theoretic characterization of pairs of inverse relations of the Riordan type. Acta Appl. Math., 85(1-3):93–109, 2005. MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    G. P. Egorychev and E. V. Zima. Integral representation and algorithms for closed form summation. Handbook of Algebra, vol. 5, (ed. M. Hazewinkel), Elsevier, 459–529, 2008. Google Scholar
  12. 12.
    I. M. Gessel. A combinatorial proof of the multivaribles Lagrange inversion formula. Journal of Combinatorial Theory, Series A, 45:178–195, 1987. MATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    I. J. Good. A short proof of MacMahon’s ‘master theorem’. Proc. Cambridge Philos. Soc., 58:160, 1962. MATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    I. J. Good. Short proof of a conjecture by Dyson. J. Mathematical Phys., 11:1884, 1970. CrossRefMathSciNetGoogle Scholar
  15. 15.
    I. P. Goulden and D. M. Jackson. Combinatorial Enumeration. John Wiley & Sons, 1983. Google Scholar
  16. 16.
    P. Griffiths and J. Harris. Principles of Algebraic Geometry. John Wiley & Sons, Inc., 1978. Google Scholar
  17. 17.
    J. Gunson. Proof of a conjecture by Dyson in the statistical theory of energy levels. J. Mathematical Phys., 3:752–753, 1962. MATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    M. Hervé. Intégrale d’André Weil. In Séminaire H. Cartan de l’Ecole Normale Supérieure: Fonction analytiques de plusieurs variables complexes t. 4. 1951–52. Exposé 6. Google Scholar
  19. 19.
    I-C. Huang. Changes of parameters for generalized power series. Comm. Algebra (in print). Google Scholar
  20. 20.
    I-C. Huang. Pseudofunctors on modules with zero dimensional support. Mem. Amer. Math. Soc., 114(548):xii+53, 1995. Google Scholar
  21. 21.
    I-C. Huang. Applications of residues to combinatorial identities. Proc. Amer. Math. Soc., 125(4):1011–1017, 1997. MATHCrossRefMathSciNetGoogle Scholar
  22. 22.
    I-C. Huang. Reversion of power series by residues. Comm. Algebra, 26(3):803–812, 1998. MATHCrossRefMathSciNetGoogle Scholar
  23. 23.
    I-C. Huang. Residue methods in combinatorial analysis. In Local Cohomology and its Applications, volume 226 of Lecture Notes in Pure and Appl. Math., pages 255–342. Marcel Dekker, 2001. Google Scholar
  24. 24.
    I-C. Huang. Inverse relations and Schauder bases. J. Combin. Theory Ser. A, 97(2):203–224, 2002. MATHCrossRefMathSciNetGoogle Scholar
  25. 25.
    C. G. I. Jacobi. De resolutione aequationum per series infinitas. J. Reine Angew. Math., 6:257–286, 1830. MATHGoogle Scholar
  26. 26.
    E. Kunz. Kähler Differentials. Vieweg, Braunschweig, Wiesbaden, 1986. MATHGoogle Scholar
  27. 27.
    A. M. Kytmanov. A formula for the transformation of the Grothendieck residue and some of its applications. Sibirsk. Mat. Zh., 29(3):198–202, 223, 1988. MATHMathSciNetGoogle Scholar
  28. 28.
    J. Lipman. Residues and traces of differential forms via Hochschild homology, volume 61. Contemporary Mathematics of the AMS, 1987. Google Scholar
  29. 29.
    H. Matsumura. Commutative Ring Theory. Cambridge University Press, 1986. Google Scholar
  30. 30.
    D. Merlini, R. Sprugnoli, and M. C. Verri. Lagrange inversion: when and how. Acta Appl. Math., 94(3):233–249 (2007), 2006. MATHCrossRefMathSciNetGoogle Scholar
  31. 31.
    D. Merlini, R. Sprugnoli, and M. C. Verri. Combinatorial sums and implicit Riordan arrays. to appear in Discrete Mathematics, doi: 10.1016/j.disc.2007.12.039.
  32. 32.
    D. S. Passman. The algebraic structure of group rings. Wiley-Interscience [John Wiley & Sons], New York, 1977. Pure and Applied Mathematics. MATHGoogle Scholar
  33. 33.
    J. Riordan. Combinatorial Identities. Wiley, 1968. Google Scholar
  34. 34.
    A. Weil. L’intégrale de Cauchy et les fonctions de plusieurs variables. Math. Ann., 111(1):178–182, 1935. CrossRefMathSciNetGoogle Scholar
  35. 35.
    K. G. Wilson. Proof of a conjecture by Dyson. J. Mathematical Phys., 3:1040–1043, 1962. MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  1. 1.Institute of MathematicsAcademia SinicaNankang, TaipeiTaiwan, R.O.C.

Personalised recommendations