Wheeeler – Hypermobile Robot

  • Grzegorz Granosik
  • Krzysztof Mianowski
  • Michał Pytasz
Part of the Communications in Computer and Information Science book series (CCIS, volume 33)


We have designed and built the prototype of hyper redundant, articulated mobile robot propelled on wheels and therefore called - Wheeeler. In this paper we present progress in our project, focusing on modeling and prototyping phase. We show model of the robot built and verified in 3D simulator and proof-of-concept 3-segment device. Wheeeler is designed to operate in a rough terrain and fulfill tasks such as climbing up or down the stairs, going through trenches, avoiding or climbing over obstacles, operating in narrow, limited spaces like ventilation shafts. The major difficulty of control of hypermobile robots is synchronization of multiple actuators. Design of the high level control system, which can help human operator to intuitively steer this robot is the main goal of our project. In the further part of this paper we introduce communication and control architecture.


Hypermobile robot teleoperation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Baker, J., Borenstein, J.: The Joysnake A Haptic Operator Console for High-Degree-of-Freedom Robots. In: 2006 International Joint Topical Meeting: “Sharing Solutions for Emergencies and Hazardous Environments”, Salt Lake City, USA, February 12-15 (2006)Google Scholar
  2. 2.
    Granosik, G., Hansen, M., Borenstein, J.: The OmniTread Serpentine Robot for Industrial Inspection and Surveillance. Industrial Robots International Journal, Special Issue on Mobile Robots IR32-2, 139–148 (2005)Google Scholar
  3. 3.
    Granosik, G., Borenstein, J., Hansen, M.G.: Serpentine Robots for Industrial Inspection and Surveillance. In: Huat, L.K. (ed.) Industrial Robotics. Programming, Simulation and Applications, pp. 633–662. the plV pro literatur Verlag, Germany (2007)Google Scholar
  4. 4.
    Granosik, G.: Hypermobile robots. In: Aschemann, H. (ed.) New Approaches in Automation and Robotics, pp. 315–332. I-Tech Education and Publishing, Vienna (2008)Google Scholar
  5. 5.
    Hirose, S., Morishima, A.: Design and Control of a Mobile Robot With an Articulated Body. The International Journal of Robotics Research 9(2), 99–113 (1990)CrossRefGoogle Scholar
  6. 6.
    Hirose, S., Morishima, A., Tukagosi, S., Tsumaki, T., Monobe, H.: Design of Practical Snake Vehicle: Articulated Body Mobile Robot KR-II. In: Fifth Int. Conference on Advanced Robotics, ’Robots in Unstructured Environments’, vol. 1, pp. 833–838 (1991)Google Scholar
  7. 7.
    INSPECTOR SYSTEMS Rainer Hitzel GmbH,
  8. 8.
    Kamegawa, T., Yamasaki, T., Igarashi, H., Matsuno, F.: Development of the Snake-like Rescue Robot KOHGA. In: Proc. IEEE Int. Conference on Robotics and Automation, New Orleans, LA, April 2004, pp. 5081–5086 (2004)Google Scholar
  9. 9.
    Klaassen, B., Paap, K.L.: GMD-SNAKE2. A Snake-Like Robot Driven by Wheels and a Method for Motion Control. In: Proc. Of IEEE International Conference on Robotics and Automation, Detroit, MI, May 10-15, pp. 3014–3019 (1999)Google Scholar
  10. 10.
    Long, G., Anderson, J., Borenstein, J.: The OmniPede: A New Approach to Obstacle Traversion. In: Proc. IEEE Int. Conf. on Robotics and Automation, USA, pp. 714–719 (2002)Google Scholar
  11. 11.
    Michel, O.: WebotsTM: Professional Mobile Robot Simulation. International Journal of Adavnced Robotic Systems 1(1), 39–42 (2004)Google Scholar
  12. 12.
    Osuka, K., Kitajima, H.: Development of Mobile Inspection Robot for Rescue Activities: MOIRA. In: Proc. IEEE/RSJ Int. Conference on Intelligent Robots and Systems, Las Vegas, Nevada, pp. 3373–3377 (2003)Google Scholar
  13. 13.
    Pytasz, M., Granosik, G.: Applying CORBA technology for the teleoperation of Wheeeler. In: Kozłowski, K. (ed.) Robot Motion and Control 2007 in the “Lecture Notes in Control and Information Sciences”, pp. 311–318. Springer, London (2007)CrossRefGoogle Scholar
  14. 14.
    Pytasz, M., Granosik, G.: Object oriented network control of Wheeeler – the hyper mobile inspection robot. In: CD Proc. of IEEE International Workshop on Safety, Security, and Rescue Robotics, Rome, Italy, September 27-29 (2007) ISBN: 978-1-4244-1569-4Google Scholar
  15. 15.
    Schempf, H., Mutschler, E., Goltsberg, V., Skoptsov, G., Gavaert, A., Vradis, G.: Explorer: Untethered Real-time Gas Main Assessment Robot System. In: Proc. of Int. Workshop on Advances in Service Robotics, ASER 2003, Bardolino, Italy (2003)Google Scholar
  16. 16.
    Scholl, K.U., Kepplin, V., Berns, K., Dillmann, R.: Controlling a multi-joint robot for autonomous sewer inspection. In: Proc. IEEE Int. Conference on Robotics and Automation, ICRA 2000, vol. 2, pp. 1701–1706 (2000)Google Scholar
  17. 17.
    Streich, H., Adria, O.: Software approach for the autonomous inspection robot MAKRO. In: Proc. IEEE Int. Conference on Robotics and Automation, New Orleans, LA, USA, pp. 3411–3416 (2004)Google Scholar
  18. 18.
    Takayama, T., Hirose, S.: Development of Souryu-I connected crawler vehicle for inspection of narrow and winding space. In: 26th Annual Conference of the IEEE Industrial Electronics Society, IECON 2000, vol. 1, pp. 143–148 (2000)Google Scholar
  19. 19.
    Zhang, H., Wang, W., Deng, Z., Zong, G., Zhang, J.: A Novel Reconfigurable Robot for Urban Search and Rescue. International Journal of Advanced Robotic Systems 3(4), 359–366 (2006)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Grzegorz Granosik
    • 1
  • Krzysztof Mianowski
    • 2
  • Michał Pytasz
    • 1
  1. 1.Institute of Automatic ControlTechnical University of LodzLodzPoland
  2. 2.The Faculty of Power and Aeronautical EngineeringWarsaw University of TechnologyWarsawPoland

Personalised recommendations