The Fly Algorithm for Robot Navigation

  • Rodrigo Montúfar-Chaveznava
  • Mónica Pérez-Meza
  • Ivette Caldelas
Part of the Communications in Computer and Information Science book series (CCIS, volume 33)


The fly algorithm is a strategy employed for 3D reconstruction of scenes, which employs the genetic algorithms and stereovision principles to determine clusters of points corresponding to different objects present in scene. The obtained reconstruction is partial, but enough to recognize obstacles in the robot space work. This 3D reconstruction strategy also allows to know the dimensions of the detected objects. Many parameters are involved in the fly algorithm, and then it is difficult to assign the optimal values for the best performance. In this work we test different parameters values, analyze the results and present some improvements to the algorithm considering the fly algorithm can be employed in robot navigation.


The fly algorithm Evolutive Strategies Vision stereo Robotics 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Marr, D., Poggio, T.: A computational theory of human stereo vision. Proc. of the Royal Soc. of London. Series B, Biological Sciences 204(1156), 301–328 (1979)CrossRefGoogle Scholar
  2. 2.
    Gutierrez, S., Marroquin, J.L.: Disparity estimation and reconstruction in stereo vision. Technical communication No I-03-07/7-04-2003. CC/CIMAT, Mexico (2003)Google Scholar
  3. 3.
    Quam, L., Hannah, M.J.: Stanford automated photogrammetry research. Technical Report AIM-254, Stanford AI Lab (1974)Google Scholar
  4. 4.
    Zhang, Z.: A flexible new technique for camera calibration. IEEE Transactions on Pattern Analysis and Machine Intelligence 22(11), 1330–1334 (2000)CrossRefGoogle Scholar
  5. 5.
    Abdel-Aziz, Y.I., Karara, H.M.: Direct linear transformation from comparator coordinates into object space coordinates in close-range photogrammetry. In: Proc. of the Symp. on Close-Range Photogrammetry, Falls Church, VA, pp. 1–18 (1971)Google Scholar
  6. 6.
    Tsai, R.Y.: A versatile camera calibration technique for 3D machine vision. IEEE Journal of Robotics and Automation RA-3(4), 323–344 (1987)CrossRefGoogle Scholar
  7. 7.
    Alander, J.T.: Indexed bibliography of genetic algorithms in optics and image processing. Rep. 94-1-OPTICS, Univ. of Vaasa, Dep. of Inf. Tech. and Prod. Ec. (1995)Google Scholar
  8. 8.
    Lutton, E., Martinez, P.: A genetic algorithm for the detection of d geometric primitives in images. In: Proceedings of the International Conference on Pattern Recognition, ICPR 1994, Los Alamitos, CA, pp. 526–528 (1994)Google Scholar
  9. 9.
    Roth, G., Levine, M.D.: Geometric primitive extraction using a genetic algorithm. IEEE Trans. on Pattern Analysis and Machine Intelligence 16(9), 901–905 (1994)CrossRefGoogle Scholar
  10. 10.
    Louchet, J.: Using an individual evolution strategy for stereovision. Genetic Programming and Evolvable Machines 2(2), 101–109 (2001)CrossRefMATHGoogle Scholar
  11. 11.
    Collet, P., Lutton, E., Raynal, F., Schoenauer, M.: Individual GP: an alternative viewpoint for the resolution of complex problems. In: Proc. of the Genetic and Evolutionary Computation Conference GECCO 1999, San Francisco, CA, vol. 2, pp. 978–981 (1999)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Rodrigo Montúfar-Chaveznava
    • 1
  • Mónica Pérez-Meza
    • 2
  • Ivette Caldelas
    • 3
  1. 1.Engineering DivisionITESM Santa FeMéxicoMexico
  2. 2.Miahuatlán de Porfirio DíazUniversidad de la Sierra SurOaxacaMexico
  3. 3.Instituto de Investigaciones BiomédicasUniversidad Nacional Autónoma de MéxicoMéxicoMexico

Personalised recommendations