Stability of a Distributed Generation Network Using the Kuramoto Models

  • Vincenzo Fioriti
  • Silvia Ruzzante
  • Elisa Castorini
  • Elena Marchei
  • Vittorio Rosato
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5508)


We derive a Kuramoto-like equation from the Cardell-Ilic distributed electrical generation network and use the resulting model to simulate the phase stability and the synchronization of a small electrical grid. It is well-known that a major problem for distributed generation is the frequency stability. This is a non linear problem and proper models for analysis are sorely lacking. In our model nodes are arranged in a regular lattice; the strength of their couplings are randomly chosen and allowed to vary as square waves. Although the system undergoes several synchronization losses, nevertheless it is able to quickly resynchronize. Moreover, we show that the synchronization rising-time follows a power-law.


Coupling Strength Power Supply System Large Lyapunov Exponent Large Lyapunov Exponent Kuramoto Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Chia, H., Ueda, Y.: Kuramoto Oscillators. Chaos Solitons & Fractals 12, 159 (2001)CrossRefGoogle Scholar
  2. 2.
    Kuramoto, Y.: Chemical Oscillation. Springer, Berlin (1984)CrossRefMATHGoogle Scholar
  3. 3.
    Popovych, O., et al.: Phase Chaos in Coupled Oscillators. Phy. Rev. E 71, 06520 (2005)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Carreras, B., et al.: Evidence for SOC in a Time Series of Electric Power System Blackouts. Chaos 51, 1733 (2004)Google Scholar
  5. 5.
    Filatrella, G., et al.: Analysis of Power Grids using the Kuramoto Model. Eur. Phy. J. B 61, 485 (2008)CrossRefGoogle Scholar
  6. 6.
    Cardell, J., Ilic, M.: Maintaining Stability with Distribute Generation. IEEE Power Eng. Soc. Meeting (2004)Google Scholar
  7. 7.
    Canale, E., Monzon, P.: Gluing Kuramoto Coupled Oscillators Networks. In: IEEE Decision and Control Conf., New Orleans (2007)Google Scholar
  8. 8.
    Moreno, Y., Pacheco, A.: Synchronization of Kuramoto Oscillators in Scale-Free Networks. Europhys. Lett. 68(4), 603 (2004)CrossRefGoogle Scholar
  9. 9.
    Acebron, J., et al.: The Kuramoto Model. Rew. Mod. Phy. 77, 137 (2005)CrossRefGoogle Scholar
  10. 10.
    Fioriti, V., Rosato, V., Setola, R.: Chaos and Synchronization in Variable Coupling Kuramoto oscillators. Experimental Chaos Catania (2008)Google Scholar
  11. 11.
  12. 12.
    Carsten, J., et al.: Riso Energy Report (2000)Google Scholar
  13. 13.
    Cardell, J., Ilic, M.: The Control of Distributed Generation. Kluwer Academic Press, Dordrecht (1998)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Vincenzo Fioriti
    • 1
  • Silvia Ruzzante
    • 2
  • Elisa Castorini
    • 1
  • Elena Marchei
    • 2
  • Vittorio Rosato
    • 1
  1. 1.ENEA, Casaccia Research CenterS. Maria di Galeria (Rome)Italy
  2. 2.ENEA, Portici Research CenterPorticiItaly

Personalised recommendations