Gibbs Motif Sampler, Weight Matrix and Artificial Neural Network for the Prediction of MHC Class-II Binding Peptides

  • Satarudra Prakash Singh
  • Bhartendu Nath Mishra
Part of the Communications in Computer and Information Science book series (CCIS, volume 40)


The identification of MHC class-II restricted epitope is an important goal in peptide based vaccine and diagnostic development. In the present study, we discuss the applications of Gibbs motif sampler, weight matrix and artificial neural network for the prediction of peptide binding to sixteen MHC class-II molecules of human and mouse. The average prediction performances of sixteen MHC class-II molecules in terms of Aroc, based on Gibbs motif sampler, sequence weighting and artificial neural network are 0.56, 0.55 and 0.51 respectively. However, further improvements in the performance of software tools for prediction of MHC class-II binding peptide based on various methods largely depends on the size of training and validation datasets and the correct identification of the peptide binding core.


MHC Weight matrix ANN Gibbs sampler Motif Epitope 


ANN-artificial neural network MHC-major histocompatibility complex Aroc-area under receiver operating characteristic IEDB- immune epitope database 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Cresswell, P.: Assembly, transport, and function of MHC class II molecules. Annu. Rev. Immunol. 12, 259–293 (1994)CrossRefPubMedGoogle Scholar
  2. 2.
    Peters, B., Sette, A.: Integrating epitope data into the emerging web of biomedical knowledge resources. Nat. Rev. Immunol. 7, 485–490 (2007)CrossRefPubMedGoogle Scholar
  3. 3.
    Stern, L.J., Brown, J.H., Jardetzky, T.S., Gorga, J.C., Urban, R.G., et al.: Crystal structure of the human class II MHC protein HLA-DR1 complexed with an influenza virus peptide. Nature 368, 215–221 (1994)CrossRefPubMedGoogle Scholar
  4. 4.
    Jones, E.Y., Fugger, L., Strominger, J.L., Siebold, C.: MHC class II proteins and disease: a structural perspective. Nat. Rev. Immunol. 6, 271–282 (2006)CrossRefPubMedGoogle Scholar
  5. 5.
    Godkin, A.J., Smith, K.J., Willis, A., Tejada-Simon, M.V., Zhang, J., et al.: Naturally processed HLA class II peptides reveal highly conserved immunogenic flanking region sequence preferences that reflect antigen processing rather than peptide-MHC interactions. J. Immunol. 166, 6720–6727 (2001)CrossRefPubMedGoogle Scholar
  6. 6.
    Rammensee, H., Bachmann, J., Emmerich, N., Bachor, O., Stevanovic, S.: SYFPEITHI: database for MHC ligands and peptide motifs. Immunogenetics 50, 213–219 (1999)CrossRefPubMedGoogle Scholar
  7. 7.
    Bhasin, M., Singh, H., Raghava, G.P.: MHCBN: a comprehensive database of MHC binding and non-binding peptides. Bioinformatics 19, 665–666 (2003)CrossRefPubMedGoogle Scholar
  8. 8.
    Toseland, C.P., Clayton, D.J., McSparron, H., Hemsley, S.L., Blythe, M.J., et al.: AntiJen: a quantitative immunology database integrating functional, thermodynamic, kinetic, biophysical, and cellular data. Immunome Res. 1, 4 (2005)CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Reche, P.A., Zhang, H., Glutting, J.-P., Reinherz, E.L.: EPIMHC: a curated database of MHC-binding peptides for customized computational vaccinology. Bioinformatics 21(9), 2140–2141 (2005)CrossRefPubMedGoogle Scholar
  10. 10.
    Peters, B., Sidney, J., Bourne, P., Bui, H.H., Buus, S., et al.: The immune epitope database and analysis resource: from vision to blueprint. PLoS Biol. 3, 91 (2005)CrossRefGoogle Scholar
  11. 11.
    Hammer, J., Bono, E., Gallazzi, F., Belunis, C., Nagy, Z., et al.: Precise prediction of major histocompatibility complex class II-peptide interaction based on peptide side chain scanning. J. Exp. Med. 180, 2353–2358 (1994)CrossRefPubMedGoogle Scholar
  12. 12.
    Reche, P.A., Glutting, J.-P., Reinherz, E.L.: Prediction of MHC Class I Binding Peptides Using Profile Motifs. Human Immunology 63, 701–709 (2002)CrossRefPubMedGoogle Scholar
  13. 13.
    Mamitsuka, H.: Predicting peptides that bind to MHC molecules using supervised learning of hidden Markov models. Proteins 33(4), 460–474 (1998)CrossRefPubMedGoogle Scholar
  14. 14.
    Donnes, P., Elofsson, A.: Prediction of MHC class I binding peptides, using SVMHC. BMC Bioinformatics 3(1), 25 (2002)CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Honeyman, M.C., Brusic, V., Stone, N.L., Harrison, L.C.: Neural network-based prediction of candidate T-cell epitopes. Nat. Biotechnol. 16, 966–969 (1998)CrossRefPubMedGoogle Scholar
  16. 16.
    Bui, H.H., Sidney, J., Peters, B., Sathiamurthy, M., Sinichi, A., et al.: Automated generation and evaluation of specific MHC binding predictive tools: ARB matrix applications. Immunogenetics 57, 304–314 (2005)CrossRefPubMedGoogle Scholar
  17. 17.
    Nielsen, M., Lundegaard, C., Lund, O.: Prediction of MHC class II binding affinity using SMM-align, a novel stabilization matrix alignment method. BMC Bioinformatics 8, 238 (2007)CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Nielsen, M., Lundegaard, C., Worning, P., Hvid, C.S., Lamberth, K., Buus, S., Brunak, S., Lund, O.: Improved prediction of MHC class I and class II epitopes using a novel Gibbs sampling approach. Bioinformatics 20, 1388–1397 (2004)CrossRefPubMedGoogle Scholar
  19. 19.
    Henikoff, S., Henikoff, J.: Amino acid substitution matrices from protein blocks. Proc. Natl. Acad. Sci. USA 89, 10915–10919 (1992)CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Nielsen, M., Lundegaard, C., Worning, P., Lauemøller, S.L., Lamberth, K., Buus, S., Brunak, S., Lund, O.: Reliable prediction of T-cell epitopes using neural networks with novel sequence representations. Protein Sci. 12(5), 1007–1017 (2003)CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Wang, P., Sidney, J., Dow, C., Mothé, B., Sette, A., et al.: A Systematic Assessment of MHC Class II Peptide Binding Predictions and Evaluation of a Consensus Approach. PLoS Comput. Biol. 4(4), e1000048 (2008)CrossRefGoogle Scholar
  22. 22.
    Hobohm, U., Scharf, M., Schneider, R., Sander, C.: Selection of representative protein data sets. Protein Sci. 1(3), 409–417 (1992)CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Singh, S.P., Mishra, B.N.: Prediction of MHC binding peptide using Gibbs motif sampler, weight matrix and artificial neural network. Bioinformation 3(4), 150–155 (2008)CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Singh, S.P., Mishra, B.N.: Ranking of binding and nonbinding peptides to MHC class–I molecules using inverse folding approach: Implications for vaccine design. Bioinformation 3(2), 72–82 (2008)CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Satarudra Prakash Singh
    • 1
    • 2
  • Bhartendu Nath Mishra
    • 2
  1. 1.Amity Institute of BiotechnologyAmity University Uttar PradeshLucknowIndia
  2. 2.Department of Biotechnology, Institute of Engineering & TechnologyU.P. Technical UniversityLucknowIndia

Personalised recommendations