Study of Drug-Nucleic Acid Interactions: 9-amino- [N-2-(4-morpholinyl)ethyl]acridine-4-carboxamide

  • Rajeshwer Shukla
  • Sugriva Nath Tiwari
Part of the Communications in Computer and Information Science book series (CCIS, volume 40)


9-amino-[N-2-(4-morpholinyl)ethyl]acridine-4-carboxamide (9AMC) elicits its antitumour activity through intercalative binding with the genetic material, DNA molecule. The binding of this acridine molecule with DNA fragments has been examined using quantum mechanical methods. Second order perturbation theory valid for medium range interactions has been used to obtain binding sites of the acridine drug. Relative stability of various acridine-base pair complexes and preferred molecular associations have been discussed.


DNA Acridine CNDO/2 Method Molecular Interactions and Computer Simulation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Saenger, W.: Principles of Nucleic Acid Structure. Springer, New York (1984)CrossRefGoogle Scholar
  2. 2.
    Maiti, M.: In: Vijayan, M., Yathindra, N., Kolaskar, A.S. (eds.) Perspectives in Structural Biology, p. 583. Universities Press, India (1999)Google Scholar
  3. 3.
    Haq, I., Ladbury, J.: J. Mol.: Recognit 13, 188 (2000)CrossRefGoogle Scholar
  4. 4.
    Kumar, R., Lown, J.W.: Org. Biomol. Chem. 1, 3327 (2003)CrossRefPubMedGoogle Scholar
  5. 5.
    Malonne, H., Atassi, G.: Anti-Cancer Drugs 8, 811 (1997)CrossRefPubMedGoogle Scholar
  6. 6.
    Denny, W.A.: Exp. Opin. Invest. Drugs 6, 1845 (1997)CrossRefGoogle Scholar
  7. 7.
    Finaly, G.J., Riou, J.F., Baguley, B.C.: Eur. J. Cancer 32A, 708 (1996)CrossRefGoogle Scholar
  8. 8.
    Bailly, C., Denny, W.A., Mellor, E.L., Wakelin, L.P.G., Waring, M.J.: Biochemistry 31, 3514 (1992)CrossRefPubMedGoogle Scholar
  9. 9.
    Denny, W.A., Roos, I.A.G., Wakelin, L.P.G.: Anti-Cancer Drug Des. 1, 855 (1986)Google Scholar
  10. 10.
    Wakelin, P.G., Atwell, G.J., Rewcastle, G.W., Denny, W.A.: J. Biomol. Struct. Dyn. 5, 145 (1987)CrossRefGoogle Scholar
  11. 11.
    Shukla, R., Mishra, M., Tiwari, S.N.: Progress in Crystal Growth and Characterization of Materials 52, 107 (2006)CrossRefGoogle Scholar
  12. 12.
    Adams, A., Guss, J.M., Denny, W.A., Wakelin, L.P.G.: Acta Cryst D60, 823 (2004)Google Scholar
  13. 13.
    Pople, J.A., Beveridge, D.L.: Approximate Molecular Orbital Theory. Mc-Graw Hill Pub. Co., New York (1970)Google Scholar
  14. 14.
    Claverie, P.: In: Pullman, B. (ed.) Intermolecular Interactions-From Diatomics to Biopolymers, vol. 69, John Wiley, New York (1978)Google Scholar
  15. 15.
    Rein, R.: In: Pullman, B. (ed.) Intermolecular Interactions-From Diatomics to Biopolymers, p. 307. John Wiley, New York (1978)Google Scholar
  16. 16.
    Tiwari, S.N., Mishra, M., Sanyal, N.K.: Indian J. Phys. 76B, 11 (2002)Google Scholar
  17. 17.
    Pritchard, N.J., Blake, A., Peacocke, A.R.: Nature 212, 1360 (1966)CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Rajeshwer Shukla
    • 1
  • Sugriva Nath Tiwari
    • 1
  1. 1.Department of PhysicsD.D.U. Gorakhpur UniversityGorakhpurIndia

Personalised recommendations