Color Image Restoration Using Morphological Detectors and Adaptive Filter

  • Anita Sahoo
  • Rohal Suchi
  • Neha Khan
  • Pooja Pandey
  • Mudita Srivastava
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 40)

Abstract

A two phased impulse restoration scheme for color images is presented. In the first phase of the proposed image restoration scheme it detects the pixels corrupted with impulse noise by employing the tools of mathematical morphology and then in the next phase a linear adaptive mean filter attempts to remove those noisy pixels in an efficient manner. Experimental results indicate that the proposed scheme can suppress impulse noise effectively in color images. This provides a better restoration performance than many other filters used for removing impulse noise from color images.

Keywords

Morphological Operations Adaptive Mean Filter Alpha Trimmed Mean Filter Image Restoration Impulse Noise Color image in RGB space 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Zhang, X., Yin, Z., Xiong, Y.: Adaptive Switching Mean Filter for Impulse Noise Removal. Congress on Image and Signal Processing 3, 275–278 (2008)CrossRefGoogle Scholar
  2. 2.
    Deng, Z.F., Yin, Z.P., Xiong, Y.L.: High probability impulse noise removing algorithm based on mathematical morphology. IEEE Signal Process. Lett. 14(1), 31–34 (2007)CrossRefGoogle Scholar
  3. 3.
    Yin, Z.P., Zhang, X.M., Xiong, Y.L.: Adaptive switching mean filter using conditional morphological noise detector. Image and Signal Processing 44(6) (2008)Google Scholar
  4. 4.
    Vijay Kumar, V.R., Manikandan, S., Ebenezer, D., Vanathi, P.T., Kanagasabapathy, P.: High Density Impulse noise Removal in Color Images Using Median Controlled Adaptive Recursive Weighted Median Filter. IAENG International Journal of Computer Science 34(1), IJCS_34_1_2 (2007)Google Scholar
  5. 5.
    Arce, G.: A General Weighted Median Filter Structure Admitting Negative Weights. IEEE Tr. On Signal Proc. 46 (1998)Google Scholar
  6. 6.
    Serra, J. (ed.): Mathematical Morphology and Its Applications to Image Processing. Kluwer Academic Publishers, Boston (1994)Google Scholar
  7. 7.
    Arce, G., Paredes, J.: Recursive Weighted Median Filters Admitting Negative Weights and Their Optimization. IEEE Tr. on Signal Proc. 48 (2000)Google Scholar
  8. 8.
    Wang, Z., Zhang, D.: Progressive switching median filter for the removal of impulse noise from highly corrupted images. IEEE Trans. Circuits Syst. II, Analog Digit. Signal Process. 46(1), 78–80 (1999)CrossRefGoogle Scholar
  9. 9.
    Eng, H.L., Ma, K.K.: Noise adaptive soft-switching median filter. IEEE Trans. Image Process. 10(2), 242–251 (2001)CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Anita Sahoo
    • 1
  • Rohal Suchi
    • 1
  • Neha Khan
    • 1
  • Pooja Pandey
    • 1
  • Mudita Srivastava
    • 1
  1. 1.JSS Academy of Technical EducationNoida

Personalised recommendations