Measuring the Storage and Retrieval of Knowledge Units: An Empirical Study Using MES

  • Selwyn Justus
  • K. Iyakutti
Part of the Communications in Computer and Information Science book series (CCIS, volume 40)

Abstract

Computer applications are smart that they require efficient storage and retrieval of data. Object-relational data models are the opted and the widely appreciable approach because of their power in object representation and relational retrieval. Two OR models were designed for representing knowledge units in the Music Expert System and three metrics were proposed to study the storage and retrieval of the knowledge units from the OR schemas. Experiments conducted to asses the storage efficiency and relational retrieval of the objects indicated significant results. The metrics were used to keep in check the size of the objects created during runtime and their relational coupling helped in the retrieval of objects, with minimal disk reads. The empirical results and interpretations concludes the work, focusing on the efficient design of OR schema models which commend the functioning of the system’s performance.

Keywords

Knowledge units Object-Relational Schema Measurements Storage & retrieval 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alagarsamy, K., Justus, S., Iyakutti, K.: Implementation Specification of a SPI supportive Knowledge management Tool. IET Software 2(2), 123–133 (2008)CrossRefGoogle Scholar
  2. 2.
    Ammar, H.H., Yacoub, S.M., Robinson, T.: Dynamic metrics for object-oriented designs. In: 5th International Software Metrics Symposium, Boca Raton, Florida, USA, pp. 50–61 (1999)Google Scholar
  3. 3.
    García-Serrano, A., Martínez, P., Teruel, D.: Knowledge-modeling techniques in the e-commerce scenario (2001), www.csd.abdn.ac.uk/~apreece/ebiweb/papers/serrano.doc
  4. 4.
    Arisholm, E., Briand, L.C., Foyen, A.: Dynamic coupling measures for object-oriented software. IEEE Transactions on Software Engineering 30(8), 491–506 (2004)CrossRefGoogle Scholar
  5. 5.
    Baroni, A.L., Calero, C., Abreu, F.B., Piatini, M.: Object relational Metrics Formalization. In: Sixth International Conference on Quality Software (2006), doi:ieeecomputersociety.org/10.1109/QSIC.2006.44 Google Scholar
  6. 6.
    Baroni, A.L., Calero, C., Ruiz, F., eAbreu, F.B.: Formalizing Object-Relational Structural Metrics. In: 5th Portuguese Association of Information Systems Conference (2004), http://ctp.di.fct.unl.pt/QUASAR/Resourses/Paper/2004/baroni5CAPSI.pdf
  7. 7.
    Calero, C., Ruiz, F., Baroni, A., Brito, A.F., Piattini, M.: An Ontological approach to describe the SQL: 2003 Object-Relational Features. International J. Computer Standards & Interfaces 28, 695–713 (2006)CrossRefGoogle Scholar
  8. 8.
    David, P., Kemerer, C.F., Sandra, A.S., James, E.T.: The Structural Complexity of Software: An Experimental Test. IEEE Transactions on Software Engineering 31(11), 982–995 (2005)CrossRefGoogle Scholar
  9. 9.
    Elmasri, Navathe, Somayajulu, Gupta: Fundamentals of Database systems, 4th edn. Pearson Education, Dorling Kindersley (2007)Google Scholar
  10. 10.
    Henderson-Sellers, B.: Object-oriented Metrics - Measures of Complexity. Prentice-Hall, Upper Saddle River (1996)Google Scholar
  11. 11.
    Justus, S., Iyakutti, K.: Assessing the Object-level Behavioral Complexity in Object Relational Databases. In: 3rd International Conference on Software Science, Technology and Engineering, Israel, pp. 48–59 (2007), doi:ieeecomputersociety.org/10.1109/SWSTE.2007.6Google Scholar
  12. 12.
    Justus, S., Iyakutti, K.: Object Relational Database Metrics: Classified and Evaluated. In: International Workshop on Software Engineering, Potsdam, Germany, pp. 119–131 (2007) ISBN-10: 3-8322-5611-3Google Scholar
  13. 13.
    Justus, S.: Data Mining for Music Distribution. In: National Conference on Datamining, India (2004)Google Scholar
  14. 14.
    Long, D., Brandt, S., Miller, E., Wang, F., Lin, Y., Xue, L., Xin, Q.: Design and implementation of large scale object-based storage system. Technical Report ucsc-crl-02-35, University of California, Santa Cruz (2002)Google Scholar
  15. 15.
    Michura, J., Capretz, M.A.M.: Metrics Suite for Class Complexity. In: International Conference on Information Technology Coding and Computing (ITCC 2005) (2005)Google Scholar
  16. 16.
    Moris. K.: Metrics for object oriented software development, Masters Thesis, M.I.T Sloan School of Management, Cambridge, MA (1998)Google Scholar
  17. 17.
    Noy, N.F., Fergerson, R.W., Musen, M.A.: The knowledge model of Protégé-2000: combining interoperability and flexibility (2000), http://pms.ifi.lmu.de/mitarbeiter/ohlbach/Ontology/Protege/SMI-2000-0830.pdf
  18. 18.
    Zhang, N., Ritter, N., Härder, T.: Enriched Relationship Processing in Object-Relational Database Management Systems. In: Third International Symposium on Cooperative Database Systems for Advanced Applications (2001)Google Scholar
  19. 19.
    Nguyen, P.H.P., Corbett, D.: A Basic Mathematical Framework for Conceptual graphs. IEEE Transactions on Knowledge and Data Engineering 18(2), 261–271 (2006)CrossRefGoogle Scholar
  20. 20.
    Piattini, M., Calero, C., Sahraoui. H., Lounis H.: Object-Relational Database Metrics, L’object (March 2001), www.iro.umontreal.ca/~sahraouh/papers/lobjet00_1.pdf
  21. 21.
    Liu, Q., Feng, D., Qin, L.-j., Zeng, L.-f.: A Framework for Accessing General Object Storage. In: International Workshop on Networking, Architectures, and Storages (2006), doi:ieeexplore.ieee.ord/10.1109/IWNAS.2006.8Google Scholar
  22. 22.
    Weil, S.A., Wang, F., Xin, Q., Brandt, S.A., Miller, E.L., Long, D.D.E., Maltzahn, C.: Ceph: A Scalable Object-Based Storage System. Technical Report UCSC-SSRC-06-01, Storage Systems Research Center, Baskin School of Engineering, University of California, Santa Cruz, CA (March 2006)Google Scholar
  23. 23.
    Morasca, S.: Software Measurement. In: Handbook of Software Engineering and Knowledge Engineering - Volume 1: Fundamentals (refereed book), Knowledge Systems Institute, Skokie, IL, USA, pp. 239—276 (2001)Google Scholar
  24. 24.
    Sears, R., van Catherine, I., Jim, G.: To BLOB or not to BLOB: Large Object Storage in a Database or a Filesystem. Technical Report, MSR-TR-2006-45, Redmond (2006)Google Scholar
  25. 25.
    Sowa, J.F.: Knowledge Representation: Logical, Philosophical, and Computational Foundations. Brooks Cole Publishing Co., Pacific Grove (2000)Google Scholar
  26. 26.
    Sowa, J.F.: Conceptual Graphs for a Data Base Interface. IBM J. of Research and Development 20(4), 336–357 (1976)CrossRefGoogle Scholar
  27. 27.
    Torgeir, D., Reidar, C.: A Survey of Case Studies of the Use of Knowledge Management in Software Engineering. Intl. J. Software Engineering and Knowledge Engineering 12(4), 391–414 (2002)CrossRefGoogle Scholar
  28. 28.
    Han, W.-S., Whang, K.-Y., Moon, Y.-S.: A Formal Framework for Pre-fetching based on the Type-Level Access Pattern in Object-Relational DBMSs. IEEE Transactions on Knowledge and Data Engineering 17(10), 1436–1448 (2005)CrossRefGoogle Scholar
  29. 29.
    Zusc, H.: Properties of Software measures. Software Quality J. 1, 255–260 (1992)Google Scholar
  30. 30.
  31. 31.
  32. 32.

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Selwyn Justus
    • 1
  • K. Iyakutti
    • 2
  1. 1.Department of Computer ApplicationsK.L.N. College of Info. Tech.MaduraiIndia
  2. 2.Department of Mircoprocessor & ComputerMadurai Kamaraj UniversityMaduraiIndia

Personalised recommendations