Advertisement

Application of Particle Swarm Optimization Algorithm for Better Nano-Devices

  • Nameirakpam Basanta Singh
  • Sanjoy Deb
  • Guru P. Mishra
  • Samir Kumar Sarkar
  • Subir Kumar Sarkar
Part of the Communications in Computer and Information Science book series (CCIS, volume 40)

Abstract

Particle swarm optimization, an intelligent soft computing tool is employed to determine the optimized system parameters of GaAs quantum well for better high frequency performance under hot electron condition at room temperature. The energy loss through LO phonon and momentum loss through LO phonon, deformation acoustic phonon and ionized impurity (both background and remote) are incorporated in the present calculations. For a typical dc biasing field, it is possible to predict the optimum values of system parameters like lattice temperature, well width and two-dimensional carrier concentration for realizing a particular high frequency response characterised by well defined cut-off frequency. Such optimization will make feasible the fabrication of a variety of new quantum devices with desired characteristics.

Keywords

Evolutionary algorithm Particle swarm optimization quantum well mobility 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Akimoto, R., Li, B.S., Akita, K., Hasama, T.: Appl. Phys. Lett. 87, 181104–181108 (2005)CrossRefGoogle Scholar
  2. 2.
    Aydogu, S., Akassu, M., Ozbas, O.: Rom Journal, physics 50(9-10), 1047–1053 (2005)Google Scholar
  3. 3.
    Sarkar, S.K., Chattopadhyay, D.: Phys. Rev. B 62, 15331–15335 (2000)CrossRefGoogle Scholar
  4. 4.
    Chattopadhyay, D.: Appl. Phys. A 53, 35–38 (1991)CrossRefGoogle Scholar
  5. 5.
    Sarkar, S.K., Gosh, P.K., Chattopadhyay, D.: Phys. Stat. Sol. (b) 207, 125–129 (1998)CrossRefGoogle Scholar
  6. 6.
    Carlson, J.M., Lyon, S.A., Worlock, J.M., Gossard, A.C., Wiegmann, W.: Bull Amer. Phys. Soc. 29, 213–218 (1984)Google Scholar
  7. 7.
    Sarkar, S.K., Karmakar, A., De, A.K.: Czech. J. Phys. 51, 249–256 (2001)CrossRefGoogle Scholar
  8. 8.
    Sarkar, S.K., Gosh, P.K., Chattopadhyay, D.: J. Appl. Phys. 78(1), 283–287 (1995)CrossRefGoogle Scholar
  9. 9.
    Kennedy, J., Eberhart, R.: Swarm intelligence. Morgan Kaufmann Publishers, Inc., San Francisco (2001)Google Scholar
  10. 10.
    Angeline, P.J.: In: Proceedings of the 1998 IEEE Congress on Evolutionary Computation, Piscataway, NJ, USA, pp. 84–89. IEEE Press, Los Alamitos (1998)Google Scholar
  11. 11.
    Blackwell, T.M., Bentley, P.J.: In: Proceedings of the 2002 IEEE Congress on Evolutionary Computation, Piscataway, NJ, USA, pp. 1691–1696. IEEE Press, Los Alamitos (2002)Google Scholar
  12. 12.
    Sarkar, S.K.: Elsevier, Computational Materials Science 29, 243–249 (2004)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Nameirakpam Basanta Singh
    • 1
  • Sanjoy Deb
    • 2
  • Guru P. Mishra
    • 2
  • Samir Kumar Sarkar
    • 2
  • Subir Kumar Sarkar
    • 2
  1. 1.Department of Electronics & Communication EngineeringManipur Institute of Technology, ImphalManipurIndia
  2. 2.Department of Electronics & Telecommunication EngineeringJadavpur UniversityKolkataIndia

Personalised recommendations